Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (Photochemical Activity and Solar Ultraviolet Radiation campaign).

We present the results of the aerosol measurements carried out over the Aegean Sea during the Photochemical Activity and Solar Ultraviolet Radiation campaign held in Greece during June 1996. Simultaneous observations performed with a lidar and a double-monochromator spectrophotometer allowed us to retrieve the optical depth, the Angström coefficient, and the backscatter-to-extinction ratio. The Sun photometric data can be used to improve quantitative aerosol measurements by lidar in the Planetary Boundary Layer. Systematic errors could arise otherwise, because the value of the backscatter-to-extinction ratio has to be supplied. Instead this ratio can be retrieved experimentally by use of an iterative solution of the lidar equation.

[1]  Alexandros Papayannis,et al.  Role of urban and suburban aerosols on solar UV radiation over Athens, Greece , 1998 .

[2]  Alexandros Papayannis,et al.  Study of the structure of the lower troposphere over Athens using a backscattering lidar during the MEDCAPOT-TRACE experiment: measurements over a suburban area , 1998 .

[3]  A. Bais,et al.  Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer. , 1997, Applied optics.

[4]  A. Bais,et al.  Solar UVB measurements with the double‐ and single‐monochromator Brewer ozone spectrophotometers , 1996 .

[5]  D. Baumgardner,et al.  Refractive indices of aerosols in the upper troposphere and lower stratosphere , 1996 .

[6]  J. Ogren,et al.  Vertical and horizontal variability of aerosol single scattering albedo and hemispheric backscatter fraction over the united states , 1996 .

[7]  V. Kovalev,et al.  Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient. , 1995, Applied optics.

[8]  W. Eichinger,et al.  Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations , 1994 .

[9]  Y Sasano,et al.  Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements. , 1994, Applied optics.

[10]  G. Fiocco,et al.  Lidar observations of the Pinatubo aerosol layer at Thule, Greenland , 1994 .

[11]  V. Kovalev Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios. , 1993, Applied optics.

[12]  L. M. Caldwell,et al.  Self-consistent Method for Determining Vertical Profiles of Aerosol and Atmospheric Properties Using a High Spectral Resolution Rayleigh-Mie Lidar , 1993 .

[13]  H. Horvath Atmospheric light absorption : a review , 1993 .

[14]  A study of the aerosol of Santiago de Chile—II. Mass extinction coefficients, visibilities and Ångström exponents , 1993 .

[15]  Colette Brogniez,et al.  Comparative observations of stratospheric aerosols by ground‐based lidar, balloon‐borne polarimeter, and satellite solar occultation , 1992 .

[16]  P. Teillet,et al.  Rayleigh optical depth comparisons from various sources. , 1990, Applied optics.

[17]  Mao Jietai,et al.  Properties of atmospheric aerosols inverted from optical remote sensing , 1990 .

[18]  G. Fiocco,et al.  Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K , 1989 .

[19]  B. Evans Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar. , 1988, Applied optics.

[20]  J. W. Brown,et al.  Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner. , 1988, Applied optics.

[21]  J.-D. F. Bartoe,et al.  Absolute solar spectral irradiance 120 nm-400 nm (results from the solar ultraviolet spectral irradiance monitor-SUSIM-experiment on board Spacelab 2) , 1988 .

[22]  Wavelength scaling of atmospheric aerosol scattering and extinction. , 1987, Applied optics.

[23]  Yasuhiro Sasano,et al.  Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications , 1987 .

[24]  Edwin W. Eloranta,et al.  Coincident Lidar and Aircraft Observations of Entrainment into Thermals and Mixed Layers , 1987 .

[25]  M. Molina,et al.  Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range , 1986 .

[26]  Y. Sasano,et al.  Error caused by using a constant extinction/backscattering ratio in the lidar solution. , 1985, Applied optics.

[27]  E. Browell,et al.  Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols. , 1985, Applied optics.

[28]  S. H. Melfi,et al.  Lidar observations of vertically organized convection in the planetary boundary layer over the ocean , 1985 .

[29]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[30]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[31]  Determination of atmospheric precipitable water vapour and turbidity parameters from diurnal infrared hygrometer and turbidimeter data , 1982 .

[32]  E. Patterson Optical properties of the crustal aerosol - Relation to chemical and physical characteristics , 1981 .

[33]  H. M. Steele,et al.  Effects of temperature and humidity on the growth and optical properties of sulphuric acid—water droplets in the stratosphere , 1981 .

[34]  M. McCormick,et al.  Methodology for error analysis and simulation of lidar aerosol measurements. , 1979, Applied optics.

[35]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[36]  Edward E. Uthe,et al.  An automatic method for determining the mixing depth from lidar observations , 1979 .

[37]  J. Langerholc,et al.  Geometrical form factors for the lidar function. , 1978, Applied optics.

[38]  J. Spinhirne,et al.  ATMOSPHERIC PARTICULATE PROPERTIES INFERRED FROM LIDAR AND SOLAR RADIOMETER OBSERVATIONS COMPARED WITH SIMULTANEOUS IN SITU AIRCRAFT MEASUREMENTS: A CASE STUDY. , 1977 .

[39]  Philip B. Russell,et al.  Lidar measurement of particles and gases by elastic backscattering and differential absorption , 1976 .

[40]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[41]  D. P. Woodman Limitations in using atmospheric models for laser transmission estimates. , 1974, Applied optics.

[42]  James A. Weinman,et al.  Radiative Properties of Carbonaceous Aerosols , 1971 .

[43]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .