Creation of well-defined "mid-sized" micropores in carbon molecular sieve membranes.

Carbon molecular sieve (CMS) membranes are candidates for the separation of organic molecules due to their stability, ability to be scaled at practical form factors, and the avoidance of expensive supports or complex multi-step fabrication processes. A critical challenge is the creation of "mid-range" (e.g., 5-9 Å) microstructures that allow for facile permeation of organic solvents and selection between similarly-sized guest molecules. Here, we create these microstructures via the pyrolysis of a microporous polymer (PIM-1) under low concentrations of hydrogen gas. The introduction of H2 inhibits aromatization of the decomposing polymer and ultimately results in the creation of a well-defined bimodal pore network that exhibits an ultramicropore size of 5.1 Å. The H2 assisted CMS dense membranes show a dramatic increase in p-xylene ideal permeability (~15 times), with little loss in p-xylene/o-xylene selectivity (18.8 vs. 25.0) when compared to PIM-1 membranes pyrolyzed under a pure argon atmosphere. This approach is successfully extended to hollow fiber membranes operating in organic solvent reverse osmosis mode, highlighting the potential of this approach to be translated from the laboratory to the field.

[1]  Ryan P. Lively,et al.  Streamlined Fabrication of Asymmetric Carbon Molecular Sieve Hollow Fiber Membranes , 2019, ACS Applied Polymer Materials.

[2]  Chen Zhang,et al.  New insights into structural evolution in carbon molecular sieve membranes during pyrolysis , 2019, Carbon.

[3]  Ryan P. Lively,et al.  Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes , 2018, Journal of Membrane Science.

[4]  P. Budd,et al.  First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1. , 2018, The journal of physical chemistry letters.

[5]  Donghun Kim,et al.  para-Xylene Ultra-selective Zeolite MFI Membranes Fabricated from Nanosheet Monolayers at the Air-Water Interface. , 2018, Angewandte Chemie.

[6]  D. Farrusseng,et al.  Xylene separation on a diverse library of exchanged faujasite zeolites , 2017 .

[7]  J. Caro,et al.  High-Flux Carbon Molecular Sieve Membranes for Gas Separation. , 2017, Angewandte Chemie.

[8]  Ryan P. Lively,et al.  Defect-free PIM-1 hollow fiber membranes , 2017 .

[9]  Chen Zhang,et al.  Carbon molecular sieve structure development and membrane performance relationships , 2017 .

[10]  Donghun Kim,et al.  Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets , 2017, Nature.

[11]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[12]  Youngjae Yoo,et al.  A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment , 2016, Scientific Reports.

[13]  J. Caro,et al.  Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity , 2016 .

[14]  Ryan P. Lively,et al.  Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes , 2016, Science.

[15]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[16]  I. Pinnau,et al.  Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1) , 2016 .

[17]  Marta S. P. Silva,et al.  Effect of dead volumes on the performance of an industrial‐scale simulated moving‐bed Parex unit for p‐xylene purification , 2016 .

[18]  W. Koros,et al.  Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors , 2015 .

[19]  Andrew G. Livingston,et al.  Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation , 2015, Science.

[20]  W. Koros,et al.  Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation , 2014 .

[21]  Donald R Paul,et al.  Creating New Types of Carbon-Based Membranes , 2012, Science.

[22]  J. Dalmon,et al.  Xylene Vapor Mixture Separation in Nanocomposite MFI-Alumina Tubular Membranes: Influence of Operating Variables , 2009 .

[23]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[24]  Y. S. Lin,et al.  Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers. , 2004, Journal of the American Chemical Society.

[25]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[26]  T. Hyeon,et al.  Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates , 2004 .

[27]  O. Terasaki,et al.  Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation , 2003, Science.

[28]  J. Jang,et al.  Selective Fabrication of Carbon Nanocapsules and Mesocellular Foams by Surface‐Modified Colloidal Silica Templating , 2002 .

[29]  J. Hedlund,et al.  High-flux MFI membranes , 2002 .

[30]  Mietek Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[31]  George Xomeritakis,et al.  Transport properties of alumina-supported MFI membranes made by secondary (seeded) growth , 2000 .

[32]  Mohamed Chaker,et al.  Direct evaluation of the sp3 content in diamond-like-carbon films by XPS , 1998 .

[33]  D. Briggs,et al.  High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database , 1992 .