Bi-directional Contactless Inductive Power Transfer System Modeling and verifying

This paper presents an approach for the modeling of bi-directional contactless inductive power transfer (CIPT) system based on the generalized state space averaging (GSSA) method. By using the proposed method, a dynamic model can be realized by a linear model. The validity of the model is verified by theoretical analysis, simulations and experimental results of a 2kW prototype bi-directional CIPT system with a 1mm air- gap. Results indicate that the proposed model is an ideal analysis tool for CIPT system . Streszczenie. Zaprezentowano system bezprzewodowej, dwukierunkowej transmisji mocy CIPT. Metoda byla zweryfikowana teoretycznie, przez symulacje oraz eksperymentalnie w systemie transmisji mocy 2 kW przez szczeline 1 mm. (Dwukierunkowa bezprzewodowa transmisja mocy - model i eksperymentalna weryfikacja)

[1]  John C Schuder,et al.  Powering an artificial heart: birth of the inductively coupled-radio frequency system in 1960. , 2002, Artificial organs.

[2]  A. Esser,et al.  Contactless charging and communication for electric vehicles , 1995 .

[3]  Houjun Tang,et al.  Modeling and simulation of a transcutaneous energy transmission system used in artificial organ implants. , 2009, Artificial organs.

[4]  Aiguo Patrick Hu,et al.  Determining optimal tuning capacitor values of TET system for achieving maximum power transfer , 2009 .

[5]  J. M. Noworolski,et al.  Generalized averaging method for power conversion circuits , 1990, 21st Annual IEEE Conference on Power Electronics Specialists.

[6]  Atsuo Kawamura,et al.  Wireless transmission of power and information through one high-frequency resonant AC link inverter for robot manipulator applications , 1995 .

[7]  Caisheng Wang,et al.  Alternative Energy Distributed Generation: Need for Multi-Source Operation , 2006, 2006 38th North American Power Symposium.

[8]  Grant Covic,et al.  Design considerations for a contactless electric vehicle battery charger , 2005, IEEE Transactions on Industrial Electronics.

[9]  Bo-Hyung Cho,et al.  An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer , 1996 .

[10]  Udaya K. Madawala,et al.  A two-way inductive power interface for single loads , 2010, 2010 IEEE International Conference on Industrial Technology.

[11]  A. W. Kelley,et al.  Connectorless power supply for an aircraft-passenger entertainment system , 1989 .

[12]  Junji Hirai,et al.  Wireless transmission of power and information and information for cableless linear motor drive , 2000 .

[13]  J. Balakrishnan,et al.  Renewable Energy and Distributed Generation in Rural Villages , 2006, First International Conference on Industrial and Information Systems.

[14]  Deron K. Jackson Inductively-coupled power transfer for electromechanical systems , 1998 .

[15]  Grant Covic,et al.  Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems , 2004, IEEE Transactions on Industrial Electronics.

[16]  A. Kawamura,et al.  Wireless transmission of power and information through one high frequency resonant AC link inverter for robot manipulator applications , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[17]  P.T. Nguyen,et al.  Power-factor-corrected single-stage inductive charger for electric-vehicle batteries , 2000, 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018).

[18]  Wei Liu,et al.  Modeling and Analyzing an Inductive Contactless Power Transfer System for Artificial Hearts Using the Generalized State Space Averaging Method , 2007 .