Australasian impact crater buried under the Bolaven volcanic field, Southern Laos
暂无分享,去创建一个
K. Sieh | P. Charusiri | B. Jicha | B. Singer | J. Herrin | J. Moore | P. Banerjee | Vanpheng Sihavong | Dayana Schonwalder Angel | Tawachai Chualaowanich | W. Wiwegwin
[1] H. Woodrow,et al. : A Review of the , 2018 .
[2] D. Bourlès,et al. 10Be in Australasian microtektites compared to tektites: Size and geographic controls , 2018, Geology.
[3] A. Graettinger. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database , 2018 .
[4] P. Rochette,et al. Australasian microtektites: Impactor identification using Cr, Co and Ni ratios , 2018 .
[5] J. Cole,et al. Magma plumbing beneath collapse caldera volcanic systems , 2018 .
[6] P. Krám,et al. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios , 2018 .
[7] C. Koeberl,et al. New clues from Earth’s most elusive impact crater: Evidence of reidite in Australasian tektites from Thailand , 2017 .
[8] N. Artemieva,et al. On the nature of the Ni-rich component in splash-form Australasian tektites , 2017 .
[9] V. Vanacker,et al. Long-term soil erosion derived from in-situ 10Be and inventories of meteoric 10Be in deeply weathered soils in southern Brazil , 2017 .
[10] K. Maher,et al. Surface ages and weathering rates from 10Be (meteoric) and 10Be/9Be: Insights from differential mass balance and reactive transport modeling , 2016 .
[11] P. Sobol,et al. Re-evaluation of the ages of 40 Ar/ 39 Ar sanidine standards and supereruptions in the western U.S. using a Noblesse multi-collector mass spectrometer , 2016 .
[12] P. Rochette,et al. Stretching out the Australasian microtektite strewn field in Victoria Land Transantarctic Mountains , 2016 .
[13] M. Trieloff,et al. Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago , 2016 .
[14] N. Shirai,et al. Precursor Materials of Australasian Tektites in Light of Chemical Compositions , 2016 .
[15] Z. Řanda,et al. On a possible parent crater for Australasian tektites: Geochemical, isotopic, geographical and other constraints , 2016 .
[16] J. Wasson. An Origin of Splash-Form Tektites in Impact Plumes , 2015 .
[17] G. Giordano,et al. Calderas and magma reservoirs , 2014 .
[18] R. Maier,et al. A New Tektite Discovery in the Guangdong Province, China, and the Search for the Source Crater of the Australasian Tektite Strewn Field , 2014 .
[19] F. Brown,et al. An age for the Korath Range, Ethiopia and the viability of 40Ar/39Ar dating of kaersutite in Late Pleistocene volcanics , 2014 .
[20] S. Saminpanya,et al. Petrography, mineralogy and geochemistry of Cretaceous sediment samples from western Khorat Plateau, Thailand, and considerations on their provenance , 2014 .
[21] John Wheeler,et al. STRUCTURAL GEOLOGY ALGORITHMS: VECTORS AND TENSORS , 2013 .
[22] A. Whymark. Review of the Australasian Tektite Source Crater Location and Candidate Structure in the Song Hong-Yinggehai Basin, Gulf of Tonkin , 2013 .
[23] Richard W. Allmendinger,et al. Spherical projections with OSXStereonet , 2013, Comput. Geosci..
[24] Agust Gudmundsson. Magma chambers: Formation, local stresses, excess pressures, and compartments , 2012 .
[25] F. Langenhorst,et al. Shock Metamorphism of Minerals , 2012 .
[26] K. Sanematsu,et al. Laterization of basalts and sandstone associated with the enrichment of Al, Ga and Sc in the Bolaven Plateau, southern Laos , 2011 .
[27] P. Ross,et al. Maar-diatreme volcanoes: A review , 2011 .
[28] Z. Řanda,et al. Lithium in tektites and impact glasses: Implications for sources, histories and large impacts , 2011 .
[29] I. Smith,et al. Dynamics of melting beneath a small-scale basaltic system: a U-Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand , 2011 .
[30] P. Rochette,et al. Shocked quartz and other mineral inclusions in Australasian microtektites , 2010 .
[31] Christian Koeberl,et al. Systematic study of universal‐stage measurements of planar deformation features in shocked quartz: Implications for statistical significance and representation of results , 2009 .
[32] B. Glass,et al. Potassium isotope abundances in Australasian tektites and microtektites , 2008 .
[33] M. Fries,et al. Micro‐Raman spectroscopic study of fine‐grained, shock‐metamorphosed rock fragments from the Australasian microtektite layer , 2008 .
[34] V. Mahale,et al. New sites of Australasian microtektites in the central Indian Ocean: Implications for the location and size of source crater , 2007 .
[35] J. Severinghaus,et al. A redetermination of the isotopic abundances of atmospheric Ar , 2006 .
[36] C. Koeberl,et al. Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba , 2006 .
[37] C. Koeberl,et al. Variation of chemical composition in Australasian tektites from different localities in Vietnam , 2006 .
[38] C. Koeberl,et al. Chemical variation within fragments of Australasian tektites , 2005 .
[39] J. Klein,et al. Beryllium-10 in Australasian tektites: Constraints on the location of the source crater , 2004 .
[40] C. Koeberl,et al. Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules , 2004 .
[41] Yung-Tan Lee,et al. Geochemical studies of tektites from East Asia , 2004 .
[42] B. French. The importance of being cratered: The new role of meteorite impact as a normal geological process , 2004 .
[43] S. Kelley,et al. Pleistocene glass in the Australian desert: The case for an impact origin , 2001 .
[44] K. Wei,et al. Australasian microtektites in the South China Sea and the West Philippine Sea: Implications for age, size, and location of the impact crater , 2000 .
[45] C. Schnetzler,et al. Layered tektites of southeast Asia: Field studies in central Laos and Vietnam , 1999 .
[46] C. Schnetzler,et al. Source of Australasian tektites: Investigating possible impact sites in Laos , 1995 .
[47] J. Pizzuto,et al. Geographic variation in Australasian microtektite concentrations : implications concerning the location and size of the source crater , 1994 .
[48] C. Koeberl,et al. In search of the Australasian tektite source crater: The Tonle Sap hypothesis , 1994 .
[49] Falko Langenhorst,et al. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory* , 1994 .
[50] J. Wasson,et al. A 10.8-kg layered (Muong-Nong-type) tektite from Wenchang, Hainan, China , 1993 .
[51] C. Schnetzler. Mechanism of Muong Nong‐type tektite formation and speculation on the source of Australasian tektites , 1992 .
[52] C. Koeberl. Geochemistry and origin of Muong Nong-type tektites☆ , 1992 .
[53] J. Wasson. Layered tektites: a multiple impact origin for the Australasian tektites , 1991 .
[54] C. Koeberl,et al. Trace element study of high- and low-refractive index Muong Nong-type tektites from Indochina , 1989 .
[55] R. J. Ford. An empirical model for the Australasian tektite field , 1988 .
[56] K. Fredriksson,et al. Brecciated Muong Nong-type tektites , 1983 .
[57] G. Wasserburg,et al. Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics , 1982 .
[58] S. Barr,et al. Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia: Summary , 1981 .
[59] A. R. Rivolo,et al. A Possible Source in Cambodia for Australasian Tektites , 1979 .
[60] B. Glass,et al. Mineral Inclusions in Muong Nong-Type Indochinites: Implications Concerning Parent Material and Process of Formation , 1979 .
[61] D. Chapman. Australasian tektite geographic pattern, crater and ray of origin, and theory of tektite events , 1971 .
[62] D. Chapman,et al. Chemical investigation of Australasian tektites , 1969 .
[63] D. Chapman,et al. Sr isotope patterns within the Southeast Australasian strewn-field , 1969 .
[64] B. Glass,et al. Physical and chemical properties of Australasian microtektites , 1969 .
[65] V. E. Barnes,et al. ORIGIN OF INDOCHINITE TEKTITES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[66] Yang Fu-ling. 1:5 Million International Geological Map of Asia , 2013 .
[67] Christian Koeberl,et al. The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why , 2010 .
[68] G. Valentine,et al. Mechanisms of low-flux intraplate volcanic fields—Basin and Range (North America) and northwest Pacific Ocean , 2010 .
[69] J. Wasson,et al. Isotopic Evidence of Tektite Formation from Loess , 2007 .
[70] A. Wagstaff,et al. Reaching the poor with health, nutrition, and population services : what works, what doesn't, and why , 2005 .
[71] C. Tonzola,et al. 10Be in Muong Nong-Type Australasian Tektites: Constraints on the Location of the Source Crater , 2001 .
[72] P. Renne,et al. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite , 2000 .
[73] P. Vella,et al. Early Quaternary global terrestrial impact of a whole comet in the Australasian tektite field, newest apparent evidences discovery from Thailand and East Asia , 1999 .
[74] Ju-Chin Chen,et al. Geochemistry and origin of tektites from the Penglei area, Hainan province, southern China , 1996 .
[75] J. Wasson,et al. Excavation and analysis of layered tektites from northeast Thailand: Results of 1994 field expedition , 1996 .
[76] G. Wasserburg,et al. Neodymium and strontium isotopic study of Australasian tektites - New constraints on the provenance and age of target materials , 1992 .
[77] B. Glass. Tektites and microtektites: key facts and inferences , 1990 .
[78] J. Whitford-Stark. A survey of Cenozoic volcanism on mainland Asia , 1987 .
[79] H. Melosh. Impact Cratering: A Geologic Process , 1986 .
[80] C. Koeberl. Geochemistry of Tektites and Impact Glasses , 1986 .
[81] D. Gault,et al. Experimental studies of oblique impact. , 1978 .
[82] Susan Werner Kieffer,et al. Shock processes in porous quartzite: Transmission electron microscope observations and theory , 1976 .
[83] Eugene M. Shoemaker,et al. Impact mechanics at Meteor Crater, Arizona , 1959 .
[84] L. J. Spencer. Origin of Tektites , 1933, Nature.