Australasian impact crater buried under the Bolaven volcanic field, Southern Laos

Significance A field of black glassy blobs, strewn across about 20% of Earth’s Eastern Hemisphere, resulted from the impact of a large meteorite about 790,000 y ago. The large crater from which these tektites originated has eluded discovery for over a century, although evidence has long pointed to a location somewhere within Indochina, near the northern limit of the strewn field. We present stratigraphic, geochemical, geophysical, and geochronological evidence that the ∼15-km diameter crater lies buried beneath a large, young volcanic field in Southern Laos. The crater and proximal effects of the largest known young meteorite impact on Earth have eluded discovery for nearly a century. We present 4 lines of evidence that the 0.79-Ma impact crater of the Australasian tektites lies buried beneath lavas of a long-lived, 910-km3 volcanic field in Southern Laos: 1) Tektite geochemistry implies the presence of young, weathered basalts at the site at the time of the impact. 2) Geologic mapping and 40Ar-39Ar dates confirm that both pre- and postimpact basaltic lavas exist at the proposed impact site and that postimpact basalts wholly cover it. 3) A gravity anomaly there may also reflect the presence of a buried ∼17 × 13-km crater. 4) The nature of an outcrop of thick, crudely layered, bouldery sandstone and mudstone breccia 10–20 km from the center of the impact and fractured quartz grains within its boulder clasts support its being part of the proximal ejecta blanket.

[1]  H. Woodrow,et al.  : A Review of the , 2018 .

[2]  D. Bourlès,et al.  10Be in Australasian microtektites compared to tektites: Size and geographic controls , 2018, Geology.

[3]  A. Graettinger Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database , 2018 .

[4]  P. Rochette,et al.  Australasian microtektites: Impactor identification using Cr, Co and Ni ratios , 2018 .

[5]  J. Cole,et al.  Magma plumbing beneath collapse caldera volcanic systems , 2018 .

[6]  P. Krám,et al.  Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios , 2018 .

[7]  C. Koeberl,et al.  New clues from Earth’s most elusive impact crater: Evidence of reidite in Australasian tektites from Thailand , 2017 .

[8]  N. Artemieva,et al.  On the nature of the Ni-rich component in splash-form Australasian tektites , 2017 .

[9]  V. Vanacker,et al.  Long-term soil erosion derived from in-situ 10Be and inventories of meteoric 10Be in deeply weathered soils in southern Brazil , 2017 .

[10]  K. Maher,et al.  Surface ages and weathering rates from 10Be (meteoric) and 10Be/9Be: Insights from differential mass balance and reactive transport modeling , 2016 .

[11]  P. Sobol,et al.  Re-evaluation of the ages of 40 Ar/ 39 Ar sanidine standards and supereruptions in the western U.S. using a Noblesse multi-collector mass spectrometer , 2016 .

[12]  P. Rochette,et al.  Stretching out the Australasian microtektite strewn field in Victoria Land Transantarctic Mountains , 2016 .

[13]  M. Trieloff,et al.  Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago , 2016 .

[14]  N. Shirai,et al.  Precursor Materials of Australasian Tektites in Light of Chemical Compositions , 2016 .

[15]  Z. Řanda,et al.  On a possible parent crater for Australasian tektites: Geochemical, isotopic, geographical and other constraints , 2016 .

[16]  J. Wasson An Origin of Splash-Form Tektites in Impact Plumes , 2015 .

[17]  G. Giordano,et al.  Calderas and magma reservoirs , 2014 .

[18]  R. Maier,et al.  A New Tektite Discovery in the Guangdong Province, China, and the Search for the Source Crater of the Australasian Tektite Strewn Field , 2014 .

[19]  F. Brown,et al.  An age for the Korath Range, Ethiopia and the viability of 40Ar/39Ar dating of kaersutite in Late Pleistocene volcanics , 2014 .

[20]  S. Saminpanya,et al.  Petrography, mineralogy and geochemistry of Cretaceous sediment samples from western Khorat Plateau, Thailand, and considerations on their provenance , 2014 .

[21]  John Wheeler,et al.  STRUCTURAL GEOLOGY ALGORITHMS: VECTORS AND TENSORS , 2013 .

[22]  A. Whymark Review of the Australasian Tektite Source Crater Location and Candidate Structure in the Song Hong-Yinggehai Basin, Gulf of Tonkin , 2013 .

[23]  Richard W. Allmendinger,et al.  Spherical projections with OSXStereonet , 2013, Comput. Geosci..

[24]  Agust Gudmundsson Magma chambers: Formation, local stresses, excess pressures, and compartments , 2012 .

[25]  F. Langenhorst,et al.  Shock Metamorphism of Minerals , 2012 .

[26]  K. Sanematsu,et al.  Laterization of basalts and sandstone associated with the enrichment of Al, Ga and Sc in the Bolaven Plateau, southern Laos , 2011 .

[27]  P. Ross,et al.  Maar-diatreme volcanoes: A review , 2011 .

[28]  Z. Řanda,et al.  Lithium in tektites and impact glasses: Implications for sources, histories and large impacts , 2011 .

[29]  I. Smith,et al.  Dynamics of melting beneath a small-scale basaltic system: a U-Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand , 2011 .

[30]  P. Rochette,et al.  Shocked quartz and other mineral inclusions in Australasian microtektites , 2010 .

[31]  Christian Koeberl,et al.  Systematic study of universal‐stage measurements of planar deformation features in shocked quartz: Implications for statistical significance and representation of results , 2009 .

[32]  B. Glass,et al.  Potassium isotope abundances in Australasian tektites and microtektites , 2008 .

[33]  M. Fries,et al.  Micro‐Raman spectroscopic study of fine‐grained, shock‐metamorphosed rock fragments from the Australasian microtektite layer , 2008 .

[34]  V. Mahale,et al.  New sites of Australasian microtektites in the central Indian Ocean: Implications for the location and size of source crater , 2007 .

[35]  J. Severinghaus,et al.  A redetermination of the isotopic abundances of atmospheric Ar , 2006 .

[36]  C. Koeberl,et al.  Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba , 2006 .

[37]  C. Koeberl,et al.  Variation of chemical composition in Australasian tektites from different localities in Vietnam , 2006 .

[38]  C. Koeberl,et al.  Chemical variation within fragments of Australasian tektites , 2005 .

[39]  J. Klein,et al.  Beryllium-10 in Australasian tektites: Constraints on the location of the source crater , 2004 .

[40]  C. Koeberl,et al.  Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules , 2004 .

[41]  Yung-Tan Lee,et al.  Geochemical studies of tektites from East Asia , 2004 .

[42]  B. French The importance of being cratered: The new role of meteorite impact as a normal geological process , 2004 .

[43]  S. Kelley,et al.  Pleistocene glass in the Australian desert: The case for an impact origin , 2001 .

[44]  K. Wei,et al.  Australasian microtektites in the South China Sea and the West Philippine Sea: Implications for age, size, and location of the impact crater , 2000 .

[45]  C. Schnetzler,et al.  Layered tektites of southeast Asia: Field studies in central Laos and Vietnam , 1999 .

[46]  C. Schnetzler,et al.  Source of Australasian tektites: Investigating possible impact sites in Laos , 1995 .

[47]  J. Pizzuto,et al.  Geographic variation in Australasian microtektite concentrations : implications concerning the location and size of the source crater , 1994 .

[48]  C. Koeberl,et al.  In search of the Australasian tektite source crater: The Tonle Sap hypothesis , 1994 .

[49]  Falko Langenhorst,et al.  Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory* , 1994 .

[50]  J. Wasson,et al.  A 10.8-kg layered (Muong-Nong-type) tektite from Wenchang, Hainan, China , 1993 .

[51]  C. Schnetzler Mechanism of Muong Nong‐type tektite formation and speculation on the source of Australasian tektites , 1992 .

[52]  C. Koeberl Geochemistry and origin of Muong Nong-type tektites☆ , 1992 .

[53]  J. Wasson Layered tektites: a multiple impact origin for the Australasian tektites , 1991 .

[54]  C. Koeberl,et al.  Trace element study of high- and low-refractive index Muong Nong-type tektites from Indochina , 1989 .

[55]  R. J. Ford An empirical model for the Australasian tektite field , 1988 .

[56]  K. Fredriksson,et al.  Brecciated Muong Nong-type tektites , 1983 .

[57]  G. Wasserburg,et al.  Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics , 1982 .

[58]  S. Barr,et al.  Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia: Summary , 1981 .

[59]  A. R. Rivolo,et al.  A Possible Source in Cambodia for Australasian Tektites , 1979 .

[60]  B. Glass,et al.  Mineral Inclusions in Muong Nong-Type Indochinites: Implications Concerning Parent Material and Process of Formation , 1979 .

[61]  D. Chapman Australasian tektite geographic pattern, crater and ray of origin, and theory of tektite events , 1971 .

[62]  D. Chapman,et al.  Chemical investigation of Australasian tektites , 1969 .

[63]  D. Chapman,et al.  Sr isotope patterns within the Southeast Australasian strewn-field , 1969 .

[64]  B. Glass,et al.  Physical and chemical properties of Australasian microtektites , 1969 .

[65]  V. E. Barnes,et al.  ORIGIN OF INDOCHINITE TEKTITES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Yang Fu-ling 1:5 Million International Geological Map of Asia , 2013 .

[67]  Christian Koeberl,et al.  The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why , 2010 .

[68]  G. Valentine,et al.  Mechanisms of low-flux intraplate volcanic fields—Basin and Range (North America) and northwest Pacific Ocean , 2010 .

[69]  J. Wasson,et al.  Isotopic Evidence of Tektite Formation from Loess , 2007 .

[70]  A. Wagstaff,et al.  Reaching the poor with health, nutrition, and population services : what works, what doesn't, and why , 2005 .

[71]  C. Tonzola,et al.  10Be in Muong Nong-Type Australasian Tektites: Constraints on the Location of the Source Crater , 2001 .

[72]  P. Renne,et al.  A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite , 2000 .

[73]  P. Vella,et al.  Early Quaternary global terrestrial impact of a whole comet in the Australasian tektite field, newest apparent evidences discovery from Thailand and East Asia , 1999 .

[74]  Ju-Chin Chen,et al.  Geochemistry and origin of tektites from the Penglei area, Hainan province, southern China , 1996 .

[75]  J. Wasson,et al.  Excavation and analysis of layered tektites from northeast Thailand: Results of 1994 field expedition , 1996 .

[76]  G. Wasserburg,et al.  Neodymium and strontium isotopic study of Australasian tektites - New constraints on the provenance and age of target materials , 1992 .

[77]  B. Glass Tektites and microtektites: key facts and inferences , 1990 .

[78]  J. Whitford-Stark A survey of Cenozoic volcanism on mainland Asia , 1987 .

[79]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[80]  C. Koeberl Geochemistry of Tektites and Impact Glasses , 1986 .

[81]  D. Gault,et al.  Experimental studies of oblique impact. , 1978 .

[82]  Susan Werner Kieffer,et al.  Shock processes in porous quartzite: Transmission electron microscope observations and theory , 1976 .

[83]  Eugene M. Shoemaker,et al.  Impact mechanics at Meteor Crater, Arizona , 1959 .

[84]  L. J. Spencer Origin of Tektites , 1933, Nature.