Reconfigurable Ultrathin Beam Redirecting Metasurfaces for RCS Reduction

A reconfigurable metasurface concept is proposed for dynamically tuning the direction of the maximum radar cross section (RCS). The basic unit cell of this metasurface is a loaded mushroom-type structure. By capacitively loading the unit cells, the reflection phase across the metasurface can be controlled, thus allowing incident plane waves to be scattered in any arbitrary direction. As a consequence, the RCS of the metasurface can be considerably reduced for the specular direction. Unlike previous static design approaches that yield fixed beam patterns, the reconfigurable aspect of the metasurface allows dynamic control over the placement of the RCS peaks and/or nulls.

[1]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[2]  Shengli Jia,et al.  An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction , 2016, Scientific Reports.

[3]  R. Gonzalo,et al.  Broadband Radar Cross-Section Reduction Using AMC Technology , 2013, IEEE Transactions on Antennas and Propagation.

[4]  Bo O. Zhu,et al.  Active impedance metasurface with full 360° reflection phase tuning , 2013, Scientific Reports.

[5]  Luis Jofre,et al.  A frequency reconfigurable cell for beam-scanning reflectarrays , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[6]  Vincent Fusco,et al.  Tunable thin radar absorber using artificial magnetic ground plane with variable backplane , 2006 .

[7]  Sean Victor Hum,et al.  Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review , 2013, IEEE Transactions on Antennas and Propagation.

[8]  Naichang Yuan,et al.  Application of metamaterials to ultra-thin radar-absorbing material design , 2005 .

[9]  T. A. Metzler,et al.  Analysis of a reflectarray antenna using microstrip patches of variable size , 1993 .

[10]  L. Boccia,et al.  Performance Improvement for a Varactor-Loaded Reflectarray Element , 2010 .

[11]  S. Maci,et al.  Metasurfing: Addressing Waves on Impenetrable Metasurfaces , 2011, IEEE Antennas and Wireless Propagation Letters.

[12]  A.K. Skrivervik,et al.  Monolithic MEMS-Based Reflectarray Cell Digitally Reconfigurable Over a 360 $^{\circ }$ Phase Range , 2008, IEEE Antennas and Wireless Propagation Letters.

[13]  Amit M. Patel,et al.  Transformation Electromagnetics Devices Based on Printed-Circuit Tensor Impedance Surfaces , 2014, IEEE Transactions on Microwave Theory and Techniques.

[14]  J. Perruisseau-Carrier,et al.  Unit Cell for Frequency-Tunable Beamscanning Reflectarrays , 2013, IEEE Transactions on Antennas and Propagation.

[15]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[16]  Douglas H. Werner,et al.  The Synthesis of Wide- and Multi-Bandgap Electromagnetic Surfaces With Finite Size and Nonuniform Capacitive Loading , 2014, IEEE Transactions on Microwave Theory and Techniques.

[17]  Stefano Maci,et al.  Metasurface Transformation Theory , 2014 .

[18]  Youquan Li,et al.  RCS Reduction of Ridged Waveguide Slot Antenna Array Using EBG Radar Absorbing Material , 2008, IEEE Antennas and Wireless Propagation Letters.

[19]  A. Massa,et al.  Ultra-thin reconfigurable electromagnetic metasurface absorbers , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[20]  R. Gonzalo,et al.  Thin AMC Structure for Radar Cross-Section Reduction , 2007, IEEE Transactions on Antennas and Propagation.

[21]  M D Gregory,et al.  Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy , 2011, IEEE Transactions on Antennas and Propagation.