Molecular imaging using X-ray free-electron lasers.

The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 10(13) transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 10(18) to 10(21) W cm(-2) or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

[1]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[2]  Anton Barty,et al.  Aerosol Imaging with a Soft X-ray Free Electron Laser , 2011 .

[3]  Veit Elser,et al.  Noise Limits on Reconstructing Diffraction Signals From Random Tomographs , 2009, IEEE Transactions on Information Theory.

[4]  P. Thibault,et al.  X-Ray Diffraction Microscopy , 2010 .

[5]  Joshua W. Shaevitz,et al.  Massively parallel X-ray holography , 2008 .

[6]  Elspeth F Garman,et al.  Experimental determination of the radiation dose limit for cryocooled protein crystals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Gyula Faigel,et al.  Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses , 2004 .

[8]  Peter Schwander,et al.  The symmetries of image formation by scattering. II. Applications. , 2011, Optics express.

[9]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[10]  Garth J. Williams,et al.  Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.

[11]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[12]  Jonas Weissenrieder,et al.  Four-dimensional ultrafast electron microscopy of phase transitions , 2006, Proceedings of the National Academy of Sciences.

[13]  J. Solem,et al.  Microholography of Living Organisms , 1982, Science.

[14]  F. Hartemann,et al.  Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. , 2006, Ultramicroscopy.

[15]  R. R. Cooney,et al.  Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. , 2012, Optics express.

[16]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  S. Marchesini,et al.  Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms. , 2007, Physical review letters.

[18]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[19]  J. Frank,et al.  SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs , 2008, Nature Protocols.

[20]  K. Schmidt,et al.  Gas dynamic virtual nozzle for generation of microscopic droplet streams , 2008, 0803.4181.

[21]  Joachim Frank,et al.  SPIDER—A modular software system for electron image processing , 1981 .

[22]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[23]  M. Yurkov,et al.  The Physics of Free Electron Lasers , 1999 .

[24]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[25]  J. L. Hansen,et al.  Pure samples of individual conformers: the separation of stereoisomers of complex molecules using electric fields. , 2009, Angewandte Chemie.

[26]  J. Miao,et al.  Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects , 1998 .

[27]  V. Lobastov,et al.  Four-dimensional ultrafast electron microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Marchesini,et al.  X-ray image reconstruction from a diffraction pattern alone , 2003, physics/0306174.

[29]  Henrik Stapelfeldt,et al.  Colloquium: Aligning molecules with strong laser pulses , 2003 .

[30]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[31]  R. Naaman,et al.  Coulomb Explosion Imaging of Small Molecules , 1989, Science.

[32]  Veit Elser,et al.  Reconstruction algorithm for single-particle diffraction imaging experiments. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  W. H. Benner,et al.  Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight , 2012, Nature.

[34]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[35]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[36]  A. Cassimi,et al.  Photoelectron diffraction mapping: molecules illuminated from within. , 2001, Physical review letters.

[37]  A. H. Walenta,et al.  Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources , 2010 .

[38]  Georg Weidenspointner,et al.  Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements , 2011, Nature Photonics.

[39]  S. Marchesini,et al.  Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns. , 2010, Physical review letters.

[40]  A. G. Cullis,et al.  Transmission microscopy without lenses for objects of unlimited size. , 2007, Ultramicroscopy.

[41]  R. Glaeser Review: electron crystallography: present excitement, a nod to the past, anticipating the future. , 1999, Journal of structural biology.

[42]  Peter Schwander,et al.  The symmetries of image formation by scattering. I. Theoretical framework. , 2010, Optics express.

[43]  J. Kirz,et al.  Biological imaging by soft x-ray diffraction microscopy , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Sayre Some implications of a theorem due to Shannon , 1952 .

[45]  A. Cassimi,et al.  Photoelectron Diffraction Mapping , 2001 .

[46]  O. J. Luiten,et al.  Compact, low power radio frequency cavity for femtosecond electron microscopy. , 2012, The Review of scientific instruments.

[47]  K. Nugent Coherent methods in the X-ray sciences , 2009, 0908.3064.

[48]  Germán Sciaini,et al.  Femtosecond electron diffraction: heralding the era of atomically resolved dynamics , 2011 .

[49]  H. Chapman Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution , 1996 .

[50]  Keith A. Nugent,et al.  Biomolecular imaging and electronic damage using X-ray free-electron lasers , 2011 .

[51]  J. Kirz,et al.  An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. , 2005, Journal of Electron Spectroscopy and Related Phenomena.

[52]  James M. Holton,et al.  A beginner’s guide to radiation damage , 2009, Journal of synchrotron radiation.

[53]  S. Marchesini,et al.  Ultrafast single-shot diffraction imaging of nanoscale dynamics , 2008 .

[54]  A. Ourmazd,et al.  The Symmetries of Image Formation by Scattering , 2010 .

[55]  D. Rolles,et al.  Imaging molecules from within: ultrafast angström-scale structure determination of molecules via photoelectron holography using free-electron lasers , 2009, 0910.3078.

[56]  A. Ourmazd,et al.  Structure from Fleeting Illumination of Faint Spinning Objects in Flight with Application to Single Molecules , 2008, 0806.2341.

[57]  H. Chapman,et al.  State- and conformer-selected beams of aligned and oriented molecules for ultrafast diffraction studies. , 2010, Physical chemistry chemical physics : PCCP.

[58]  G. Meijer,et al.  Laser-induced alignment and orientation of quantum-state-selected large molecules. , 2008, Physical review letters.

[59]  P. Nicolosi,et al.  First operation of a free-electron laser generating GW power radiation at 32 nm wavelength , 2006 .

[60]  A. Rudenko,et al.  Free-electron lasers: new avenues in molecular physics and photochemistry. , 2012, Annual review of physical chemistry (Print).

[61]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[62]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[63]  G. Meijer,et al.  Selector for structural isomers of neutral molecules. , 2008, Physical review letters.

[64]  S. Eisebitt,et al.  Lensless imaging of magnetic nanostructures by X-ray spectro-holography , 2004, Nature.

[65]  G. T. Trammell,et al.  Molecular Microscopy: Fundamental Limitations , 1970, Science.

[66]  Henry N. Chapman,et al.  Femtosecond X-ray protein nanocrystallography , 2010 .

[67]  Georg Weidenspointner,et al.  Time-resolved protein nanocrystallography using an X-ray free-electron laser , 2012, Optics express.

[68]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[69]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[70]  H. Chapman,et al.  On the feasibility of nanocrystal imaging using intense and ultrashort X-ray pulses. , 2011, ACS nano.

[71]  Richard A. London,et al.  Femtosecond time-delay X-ray holography , 2007, Nature.

[72]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[73]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[74]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.