An Overview of Theories of Continuum Mechanics With Nonlocal Elastic Response and a General Framework for Conservative and Dissipative Systems

[1]  Debasish Roy,et al.  A peridynamic theory for linear elastic shells , 2015 .

[2]  V. Zubov,et al.  Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites , 2009 .

[3]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.

[4]  Veera Sundararaghavan,et al.  A peridynamic implementation of crystal plasticity , 2014 .

[5]  R. Batra The initiation and growth of, and the interaction among, adiabatic shear bands in simple and dipolar materials , 1987 .

[6]  K. Rajagopal,et al.  On a class of non-dissipative materials that are not hyperelastic , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[8]  M. Lazar,et al.  On a theory of nonlocal elasticity of bi-Helmholtz type and some applications , 2006 .

[9]  J. Reddy,et al.  A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Kármán plates and beams , 2013 .

[10]  Gary F. Dargush,et al.  Couple stress theory for solids , 2011 .

[11]  J. Reddy,et al.  Nonlinear analysis of beams with rotation gradient dependent potential energy for constrained micro-rotation , 2017 .

[12]  A. Srinivasa,et al.  A variational procedure utilizing the assumption of maximum dissipation rate for gradient-dependent elastic–plastic materials , 2003 .

[13]  J. Reddy,et al.  On the force-displacement characteristics of finite elements for elasticity and related problems , 2015 .

[14]  I. Jasiuk,et al.  A micromechanically based couple-stress model of an elastic orthotropic two-phase composite , 2002 .

[15]  R. D. Mindlin Stress functions for a Cosserat continuum , 1965 .

[16]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[17]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[18]  M. Epstein,et al.  The energy-momentum tensor and material uniformity in finite elasticity , 1990 .

[19]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[20]  S. K. Park,et al.  Variational formulation of a modified couple stress theory and its application to a simple shear problem , 2008 .

[21]  J. N. Reddy,et al.  A microstructure-dependent Timoshenko beam model based on a modified couple stress theory , 2008 .

[22]  K. R. Rajagopal,et al.  On thermomechanical restrictions of continua , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  T. L. Warren,et al.  A non-ordinary state-based peridynamic method to model solid material deformation and fracture , 2009 .

[24]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[25]  J. N. Reddy,et al.  Energy principles and variational methods in applied mechanics , 2002 .

[26]  Dietmar Gross,et al.  Configurational forces and their application in solid mechanics , 2003 .

[27]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[28]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[29]  van Leeuwen R,et al.  Energy expressions in density-functional theory using line integrals. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  Allan N. Kaufman,et al.  DISSIPATIVE HAMILTONIAN SYSTEMS: A UNIFYING PRINCIPLE , 1984 .

[31]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[32]  I. Jasiuk,et al.  Planar Cosserat Elasticity of Materials With Holes and Intrusions , 1995 .

[33]  Arun R. Srinivasa,et al.  A dynamical theory of structures solids. I Basic developments , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[34]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[35]  H. Ziegler,et al.  A Possible Generalization of Onsager’s Theory , 1968 .

[36]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[37]  Nikolas Provatas,et al.  Phase-Field Methods in Materials Science and Engineering , 2010 .

[38]  Erkan Oterkus,et al.  A non-ordinary state-based peridynamics formulation for thermoplastic fracture , 2016 .

[39]  J. Reddy,et al.  Using non-local Timoshenko beam theories for prediction of micro- and macro-structural responses , 2016 .

[40]  J. N. Reddy,et al.  Nonlocal theories for bending, buckling and vibration of beams , 2007 .

[41]  S. Silling,et al.  Viscoplasticity using peridynamics , 2010 .

[42]  P. M. Naghdi,et al.  Elastic-plastic continua with simple force dipole , 1968 .

[43]  Mark F. Horstemeyer,et al.  Historical review of internal state variable theory for inelasticity , 2010 .

[44]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[45]  P. M. Naghdi,et al.  Plasticity theory and multipolar continuum mechanics , 1965 .

[46]  K. Rajagopal,et al.  On The Role of the Eshelby Energy-Momentum Tensor in Materials with Multiple Natural Configurations , 2005 .

[47]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[48]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[49]  Stuart S. Antman,et al.  The Theory of Rods , 1973 .

[50]  Andrew Yoo,et al.  Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. , 2006, Journal of biomechanics.

[51]  J. Maddocks,et al.  A Continuum Rod Model of Sequence-Dependent DNA Structure , 1996 .

[52]  P. M. Naghdi,et al.  A unified procedure for construction of theories of deformable media. II. Generalized continua , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[53]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[54]  P. M. Naghdi,et al.  Characterization of dislocations and their influence on plastic deformation in single crystals , 1994 .

[55]  Carl Eckart,et al.  The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity , 1948 .

[56]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[57]  A. Beris Bracket formulation as a source for the development of dynamic equations in continuum mechanics , 2001 .

[58]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[59]  E. Aifantis On the gradient approach - Relation to Eringen's nonlocal theory , 2011 .

[60]  Julian J. Rimoli,et al.  An approach for incorporating classical continuum damage models in state-based peridynamics , 2013 .

[61]  Rudolf Clausius,et al.  The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies , 2015 .

[62]  J. N. Reddy,et al.  Shear deformable beams and plates: relationships with classical solutions , 2000 .

[63]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[64]  R. Shield The Rotation Associated with Large Strains , 1973 .

[65]  J. D. Eshelby Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics , 1999 .

[66]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[67]  Arun R. Srinivasa,et al.  Mechanics of the inelastic behavior of materials—part 1, theoretical underpinnings , 1998 .

[68]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[69]  David John Littlewood,et al.  Simulation of Dynamic Fracture Using Peridynamics, Finite Element Modeling, and Contact , 2010 .

[70]  P. M. Naghdi,et al.  DIRECTORS AND MULTIPOLAR DISPLACEMENTS IN CONTINUUM MECHANICS , 1965 .

[71]  J. Reddy,et al.  Non-linear theories of beams and plates accounting for moderate rotations and material length scales , 2014 .

[72]  K. Rajagopal,et al.  On the response of non-dissipative solids , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[73]  Albert Edward Green,et al.  Multipolar continuum mechanics: functional theory I , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[74]  J. Reddy,et al.  A discrete Lagrangian based direct approach to macroscopic modelling , 2017 .

[75]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[76]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[77]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[78]  J. N. Reddy,et al.  A non-classical Mindlin plate model based on a modified couple stress theory , 2011 .

[79]  Peter Grassl,et al.  Evaluation of nonlocal approaches for modelling fracture near nonconvex boundaries , 2014, 1406.3381.

[80]  F. M. Leslie Continuum theory of liquid crystals , 1971 .