Information rates achievable with algebraic codes on quantum discrete memoryless channels

The highest information rate at which quantum error-correction schemes work reliably on a channel is called the quantum capacity. Here this is proven to be lower-bounded by the limit of coherent information maximized over the set of input density operators which are proportional to the projections onto the code spaces of symplectic stabilizer codes. The quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a completely positive linear map on a Hilbert space of finite dimension. The codes that are proven to have the desired performance are symplectic stabilizer codes. On the depolarizing channel, the bound proven here is actually the highest possible rate at which symplectic stabilizer codes work reliably

[1]  E. Knill Group representations, error bases and quantum codes , 1996, quant-ph/9608049.

[2]  I. Devetak,et al.  The private classical information capacity and quantum information capacity of a quantum channel , 2003 .

[3]  O. F. Cook The Method of Types , 1898 .

[4]  Alexander Barg,et al.  A Low-Rate Bound on the Reliability of a Quantum Discrete Memoryless Channel , 2001 .

[5]  M. Keyl,et al.  How to Correct Small Quantum Errors , 2002 .

[6]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[7]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[8]  Imre Csisźar,et al.  The Method of Types , 1998, IEEE Trans. Inf. Theory.

[9]  Mitsuru Hamada Lower bounds on the quantum capacity and highest error exponent of general memoryless channels , 2002, IEEE Trans. Inf. Theory.

[10]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[11]  D. Slepian A class of binary signaling alphabets , 1956 .

[12]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  David S. Slepian,et al.  A note off two binary signaling alphabets , 1956, IRE Trans. Inf. Theory.

[15]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[16]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[17]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[19]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[20]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[21]  Andrew M. Steane Efficient fault-tolerant quantum computing , 1999, Nature.

[22]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[23]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  Mitsuru Hamada Exponential lower bound on the highest fidelity achievable by quantum error-correcting codes , 2002 .

[25]  K. Kraus General state changes in quantum theory , 1971 .

[26]  P. Shor,et al.  Quantum Error-Correcting Codes Need Not Completely Reveal the Error Syndrome , 1996, quant-ph/9604006.

[27]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[28]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[29]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[30]  John Preskill,et al.  Achievable rates for the Gaussian quantum channel , 2001, quant-ph/0105058.

[31]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[32]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[33]  F. Lemmermeyer Error-correcting Codes , 2005 .

[34]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[35]  Daniel Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.

[36]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[37]  B. M. Terhal,et al.  QUANTUM CAPACITY IS PROPERLY DEFINED WITHOUT ENCODINGS , 1998 .

[38]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[39]  L. Grove,et al.  Classical Groups and Geometric Algebra , 2001 .

[40]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[41]  Elwyn R. Berlekamp,et al.  Key Papers in the Development of Coding Theory , 1974 .

[42]  Simon Litsyn,et al.  Quantum error detection II: Bounds , 1999, IEEE Trans. Inf. Theory.

[43]  E. Condon The Theory of Groups and Quantum Mechanics , 1932 .

[44]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[45]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[46]  A. Holevo Statistical structure of quantum theory , 2001 .

[47]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[48]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[49]  A. Holevo,et al.  On the multiplicativity conjecture for quantum channels , 2001, math-ph/0103015.

[50]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[51]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[52]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[53]  Akio Fujiwara,et al.  Operational Capacity and Pseudoclassicality of a Quantum Channel , 1998, IEEE Trans. Inf. Theory.

[54]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.