Identifying improved TSPO PET imaging probes through biomathematics: The impact of multiple TSPO binding sites in vivo

To date, 11C-(R)-PK11195 has been the most widely used TSPO PET imaging probe, although it suffers from high non-specific binding and low signal to noise. A significant number of 2nd generation TSPO radioligands have been developed with higher affinity and/or lower non-specific binding, however there is substantial inter-subject variation in their affinity for the TSPO. TSPO from human tissue samples binds 2nd generation TSPO radioligands with either high affinity (high affinity binders, HABs), or low affinity (LABs) or expresses both HAB and LAB binding sites (mixed affinity binders, MABs). The expression of these different TSPO binding sites in human is encoded by the rs6971 polymorphism in the TSPO gene. Here, we use a predictive biomathematical model to estimate the in vivo performances of three of these 2nd generation radioligands (18F-PBR111, 11C-PBR28, 11C-DPA713) and 11C-(R)-PK11195 in humans. The biomathematical model only relies on in silico, in vitro and genetic data (polymorphism frequencies in different ethnic groups) to predict the radioactivity time course in vivo. In particular, we provide estimates of the performances of these ligands in within-subject (e.g. longitudinal studies) and between-subject (e.g. disease characterisation) PET studies, with and without knowledge of the TSPO binding class. This enables an assessment of the different radioligands prior to radiolabelling or acquisition of any in vivo data. The within-subject performance was characterised in terms of the reproducibility of the in vivo binding potential (%COV[BPND]) for each separate TSPO binding class in normal and diseased states (50% to 400% increase in TSPO density), whilst the between-subject performance was characterised in terms of the number of subjects required to distinguish between different populations. The results indicated that the within-subject variability for 18F-PBR111, 11C-PBR28 and 11C-DPA713 (0.9% to 2.2%) was significantly lower than 11C-(R)-PK11195 (16% to 36%) for HABs and MABs in both normal and diseased states. For between-subject studies, sample sizes required to detect 50% differences in TSPO density with the 2nd generation tracers are approximately half that required with 11C-(R)-PK11195 when binding class information is known a priori. As binding class can be identified using a simple genetic test or from peripheral blood assays, the combination of binding class information with 2nd generation TSPO imaging data should provide superior tools to investigate inflammatory processes in humans in vivo.

[1]  M. Pomper,et al.  Initial Evaluation of 11C-DPA-713, a Novel TSPO PET Ligand, in Humans , 2009, Journal of Nuclear Medicine.

[2]  Masahiro Fujita,et al.  Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker , 2010, NeuroImage.

[3]  Alessandra Bertoldo,et al.  Novel Reference Region Model Reveals Increased Microglial and Reduced Vascular Binding of 11C-(R)-PK11195 in Patients with Alzheimer's Disease , 2008, Journal of Nuclear Medicine.

[4]  Robert B. Innis,et al.  Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands , 2011, The Journal of Nuclear Medicine.

[5]  R. Randles,et al.  Introduction to the Theory of Nonparametric Statistics , 1991 .

[6]  Michael Brady,et al.  A Biomathematical Modeling Approach to Central Nervous System Radioligand Discovery and Development , 2009, Journal of Nuclear Medicine.

[7]  Roger N Gunn,et al.  An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  G. Foskolos Synthesis of Enantiomers , 1996 .

[9]  S. Hume,et al.  Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. , 1994, Nuclear medicine and biology.

[10]  Richard B. Banati,et al.  Positron emission tomography imaging of neuroinflammation , 2007, Neurotherapeutics.

[11]  F. Turkheimer,et al.  Reference and target region modeling of [11C]-(R)-PK11195 brain studies. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  C. Wiley,et al.  The Positron Emission Tomography Ligand DAA1106 Binds With High Affinity to Activated Microglia in Human Neurological Disorders , 2008, Journal of neuropathology and experimental neurology.

[13]  Rudi A. Dierckx,et al.  Neuroinflammation in Schizophrenia-Related Psychosis: A PET Study , 2009, Journal of Nuclear Medicine.

[14]  R. Banati,et al.  Visualising microglial activation in vivo , 2002, Glia.

[15]  R N Gunn,et al.  Toward an improved prediction of human in vivo brain penetration , 2008, Xenobiotica; the fate of foreign compounds in biological systems.

[16]  Robert B. Innis,et al.  Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation , 2008, NeuroImage.

[17]  Phil Jeffrey,et al.  Improving the in Vitro Prediction of in Vivo Central Nervous System Penetration: Integrating Permeability, P-glycoprotein Efflux, and Free Fractions in Blood and Brain , 2006, Journal of Pharmacology and Experimental Therapeutics.

[18]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Jean Logan,et al.  The Use of Alternative Forms of Graphical Analysis to Balance Bias and Precision in PET Images , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  Hervé Boutin,et al.  Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[21]  Roger N Gunn,et al.  Two Binding Sites for [3H]PBR28 in Human Brain: Implications for TSPO PET Imaging of Neuroinflammation , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  Jeih-San Liow,et al.  Radiation Dosimetry and Biodistribution in Monkey and Man of 11C-PBR28: A PET Radioligand to Image Inflammation , 2007, Journal of Nuclear Medicine.