Computationally exact methods for stochastic periodic dynamics: Spatiotemporal dispersal and temporally forced transmission.

[1]  Philip K. Pollett,et al.  Optimal Sampling and Problematic Likelihood Functions in a Simple Population Model , 2009 .

[2]  Sara E. Williams,et al.  Minimizing genetic adaptation in captive breeding programs: A review , 2009 .

[3]  P K Pollett,et al.  On parameter estimation in population models II: multi-dimensional processes and transient dynamics. , 2009, Theoretical population biology.

[4]  J V Ross,et al.  Efficient methods for studying stochastic disease and population dynamics. , 2009, Theoretical population biology.

[5]  G. Medley,et al.  Porcine reproductive and respiratory syndrome virus (PRRSV) in GB pig herds: farm characteristics associated with heterogeneity in seroprevalence , 2008, BMC veterinary research.

[6]  G. Gibson,et al.  Optimal Observation Times in Experimental Epidemic Processes , 2008, Biometrics.

[7]  M. Keeling,et al.  On methods for studying stochastic disease dynamics , 2008, Journal of The Royal Society Interface.

[8]  M. Keeling,et al.  Modeling Infectious Diseases in Humans and Animals , 2007 .

[9]  H. Araki,et al.  Genetic Effects of Captive Breeding Cause a Rapid, Cumulative Fitness Decline in the Wild , 2007, Science.

[10]  John Steel,et al.  Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature , 2007, PLoS pathogens.

[11]  L. Stone,et al.  Seasonal dynamics of recurrent epidemics , 2007, Nature.

[12]  T. Taimre,et al.  On parameter estimation in population models. , 2006, Theoretical population biology.

[13]  N. Grassly,et al.  Seasonal infectious disease epidemiology , 2006, Proceedings of the Royal Society B: Biological Sciences.

[14]  P. Hosseini,et al.  Seasonality and the dynamics of infectious diseases. , 2006, Ecology letters.

[15]  Wesley M. Hochachka,et al.  Seasonal dynamics of mycoplasmal conjunctivitis in eastern North American house finches , 2004 .

[16]  Fernando Casas,et al.  On the convergence and optimization of the Baker–Campbell–Hausdorff formula , 2004 .

[17]  Matt J. Keeling,et al.  Understanding the persistence of measles: reconciling theory, simulation and observation , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  Pejman Rohani,et al.  Seasonnally forced disease dynamics explored as switching between attractors , 2001 .

[19]  P. Fuerst,et al.  Effective Population Size and Maintenance of Genetic Diversity in Captive‐Bred Populations of a Lake Victoria Cichlid , 2000 .

[20]  B. Sæther,et al.  AVIAN LIFE HISTORY VARIATION AND CONTRIBUTION OF DEMOGRAPHIC TRAITS TO THE POPULATION GROWTH RATE , 2000 .

[21]  M. D. de Jong,et al.  Introduction, persistence and fade-out of porcine reproductive and respiratory syndrome virus in a Dutch breeding herd: a mathematical analysis , 2000, Epidemiology and Infection.

[22]  J. Oteo,et al.  On the existence of the exponential solution of linear differential systems , 1999 .

[23]  Philip K. Pollett,et al.  Modelling quasi-stationary behaviour in metapopulations , 1999 .

[24]  M. Reinsch A simple expression for the terms in the Baker-Campbell-Hausdorff series , 1999, math-ph/9905012.

[25]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[26]  E. Albina,et al.  Epidemiology of porcine reproductive and respiratory syndrome (PRRS): an overview. , 1997, Veterinary microbiology.

[27]  J. Zimmerman,et al.  Porcine reproductive and respiratory syndrome virus: a persistent infection. , 1997, Veterinary microbiology.

[28]  N. Stenseth,et al.  Cyclicity and Stability of Grey-Sided Voles, Clethrionomys rufocanus, of Hokkaido: Spectral and Principal Components Analyses , 1996 .

[29]  S. Beissinger,et al.  Limitations of Captive Breeding in Endangered Species Recovery , 1996 .

[30]  A. Cunningham Disease Risks of Wildlife Translocations , 1996 .

[31]  Hugh P. Possingham,et al.  A Stochastic Metapopulation Model with Variability in Patch Size and Position , 1995 .

[32]  W. J. Anderson Continuous-Time Markov Chains , 1991 .

[33]  R. C. Thompson,et al.  Convergence proof for Goldberg's exponential series , 1989 .

[34]  Wasin So,et al.  Convergence domains for the campbell-baker-hausdorff formula , 1989 .

[35]  E. Williams,et al.  Disease and Endangered Species: The Black‐footed Ferret as a Recent Example , 1988, Conservation Biology.

[36]  J. Yorke,et al.  Seasonality and the requirements for perpetuation and eradication of viruses in populations. , 1979, American journal of epidemiology.

[37]  M. Suzuki,et al.  On the convergence of exponential operators—the Zassenhaus formula, BCH formula and systematic approximants , 1977 .

[38]  James Wei Note on the Global Validity of the Baker-Hausdorff and Magnus Theorems , 1963 .

[39]  Karl Goldberg,et al.  The formal power series for $\log e^xe^y$ , 1956 .

[40]  J. E. Campbell On a Law of Combination of Operators (Second Paper) , 1897 .

[41]  J. Campbell,et al.  On a Law of Combination of Operators bearing on the Theory of Continuous Transformation Groups , 1896 .

[42]  R. Cook,et al.  MONITORING, INVESTIGATION, AND SURVEILLANCE OF DISEASES IN CAPTIVE WILDLIFE , 1993 .

[43]  J. Ballou ASSESSING THE RISKS OF INFECTIOUS DISEASES IN CAPTIVE BREEDING AND REINTRODUCTION PROGRAMS , 1993 .

[44]  Vincent A. A. Jansen,et al.  Metapopulation persistence despite local extinction: predator-prey patch models of the Lotka-Volterra type , 1991 .

[45]  L. Hansson,et al.  Dispersal and connectivity in metapopulations , 1991 .

[46]  Morris Newman,et al.  Numerical values of Goldberg’s coefficients in the series for (^{}^{}) , 1987 .