A boundary estimate for non-negative solutions to Kolmogorov operators in non-divergence form

AbstractWe consider non-negative solutions to a class of second-order degenerate Kolmogorov operators of the form $$ \fancyscript{L}=\sum_{i,j=1}^m a_{i,j}(z)\partial_{x_i x_j}+\sum_{i=1}^m a_i(z)\partial_{x_i} +\sum_{i,j=1}^N b_{i,j}x_i\partial_{x_j}-\partial_t, $$where z = (x, t) belongs to an open set $${\Omega \subset \mathbb{R}^N\times\mathbb{R}}$$, and 1 ≤ m ≤ N. Let $${\widetilde z \in \Omega}$$, let K be a compact subset of $${\overline \Omega}$$, and let $${\Sigma \subset \partial \Omega}$$ be such that $${K \cap \partial \Omega \subset \Sigma}$$. We give sufficient geometric conditions for the validity of the following Carleson type estimate. There exists a positive constant CK, depending only on $${\Omega, \Sigma, K, \widetilde{z}}$$ and on $${\fancyscript{L}}$$, such that$$ \sup_K u \leq C_K \, u(\widetilde{z}), $$for every non-negative solution u of $${\fancyscript{L} u = 0}$$ in Ω such that $${u_{\mid \Sigma} = 0}$$.

[1]  L. Carleson On the existence of boundary values for harmonic functions in several variables , 1962 .

[2]  H. Bauer Harmonische Räume und ihre Potentialtheorie : Ausarbeitung einer im Sommersemester 1965, an der Universität Hamburg gehaltenen Vorlesung , 1966 .

[3]  H. Bauer Harmonische Räume und ihre Potentialtheorie , 1966 .

[4]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[5]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[6]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[7]  J. Bony Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .

[8]  C. Constantinescu,et al.  Potential theory on harmonic spaces , 1972 .

[9]  John L. Casti Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  S. Salsa Some properties of nonnegative solutions of parabolic differential operators , 1981 .

[11]  N. Garofalo Second order parabolic equations in nonvariational form: Boundary Harnack principle and comparison theorems for nonnegative solutions , 1984 .

[12]  S. Polidoro,et al.  On a class of hypoelliptic evolution operators , 1994 .

[13]  M. Manfredini The Dirichlet problem for a class of ultraparabolic equations , 1997, Advances in Differential Equations.

[14]  M. D. Francesco,et al.  Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form , 2006, Advances in Differential Equations.

[15]  A. Pascucci,et al.  The obstacle problem for a class of hypoelliptic ultraparabolic equations , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  U. Boscain,et al.  Gaussian estimates for hypoelliptic operators via optimal control , 2007 .

[17]  K. Nyström,et al.  A Note on Harnack Inequalities and Propagation Sets for a Class of Hypoelliptic Operators , 2010 .

[18]  A. Pascucci,et al.  Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators , 2010 .

[19]  A. Pascucci,et al.  Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options , 2010 .