A boundary estimate for non-negative solutions to Kolmogorov operators in non-divergence form
暂无分享,去创建一个
[1] L. Carleson. On the existence of boundary values for harmonic functions in several variables , 1962 .
[2] H. Bauer. Harmonische Räume und ihre Potentialtheorie : Ausarbeitung einer im Sommersemester 1965, an der Universität Hamburg gehaltenen Vorlesung , 1966 .
[3] H. Bauer. Harmonische Räume und ihre Potentialtheorie , 1966 .
[4] Richard Bellman,et al. Introduction to the mathematical theory of control processes , 1967 .
[5] E B Lee,et al. Foundations of optimal control theory , 1967 .
[6] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[7] J. Bony. Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .
[8] C. Constantinescu,et al. Potential theory on harmonic spaces , 1972 .
[9] John L. Casti. Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.
[10] S. Salsa. Some properties of nonnegative solutions of parabolic differential operators , 1981 .
[11] N. Garofalo. Second order parabolic equations in nonvariational form: Boundary Harnack principle and comparison theorems for nonnegative solutions , 1984 .
[12] S. Polidoro,et al. On a class of hypoelliptic evolution operators , 1994 .
[13] M. Manfredini. The Dirichlet problem for a class of ultraparabolic equations , 1997, Advances in Differential Equations.
[14] M. D. Francesco,et al. Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form , 2006, Advances in Differential Equations.
[15] A. Pascucci,et al. The obstacle problem for a class of hypoelliptic ultraparabolic equations , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] U. Boscain,et al. Gaussian estimates for hypoelliptic operators via optimal control , 2007 .
[17] K. Nyström,et al. A Note on Harnack Inequalities and Propagation Sets for a Class of Hypoelliptic Operators , 2010 .
[18] A. Pascucci,et al. Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators , 2010 .
[19] A. Pascucci,et al. Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options , 2010 .