An in vivo control map for the eukaryotic mRNA translation machinery

[1]  Su Jung Lee,et al.  Overexpression of Eukaryotic Translation Elongation Factor 3 Impairs Gcn2 Protein Activation* , 2012, The Journal of Biological Chemistry.

[2]  Pedro Mendes,et al.  Condor-COPASI: high-throughput computing for biochemical networks , 2012, BMC Systems Biology.

[3]  Sherif Abou Elela,et al.  Introns within Ribosomal Protein Genes Regulate the Production and Function of Yeast Ribosomes , 2011, Cell.

[4]  C. Fraser,et al.  The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit , 2011, Nucleic acids research.

[5]  A. Hinnebusch,et al.  Evidence That Eukaryotic Translation Elongation Factor 1A (eEF1A) Binds the Gcn2 Protein C Terminus and Inhibits Gcn2 Activity*♦ , 2011, The Journal of Biological Chemistry.

[6]  Craig Lawless,et al.  Global absolute quantification of a proteome: Challenges in the deployment of a QconCAT strategy , 2011, Proteomics.

[7]  J. Hershey,et al.  Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae , 2011, Proceedings of the National Academy of Sciences.

[8]  A. Hinnebusch,et al.  Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide , 2011, BMC Genomics.

[9]  M. Tuite,et al.  Kent Academic Repository Versions of Research Enquiries Citation for Published Version Link to Record in Kar Decoding Accuracy in Erf1 Mutants and Its Correlation with Pleiotropic Quantitative Traits in Yeast , 2022 .

[10]  Nicol N. Schraudolph,et al.  A Role for Codon Order in Translation Dynamics , 2010, Cell.

[11]  J. François,et al.  Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae , 2009, BMC Molecular Biology.

[12]  R. Green,et al.  Hypusine-containing Protein eIF5A Promotes Translation Elongation , 2009, Nature.

[13]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[14]  T. Kinzy,et al.  Coordination of Eukaryotic Translation Elongation Factor 1A (eEF1A) Function in Actin Organization and Translation Elongation by the Guanine Nucleotide Exchange Factor eEF1Bα* , 2009, Journal of Biological Chemistry.

[15]  Qikai Xu,et al.  Global Protein Stability Profiling in Mammalian Cells , 2008, Science.

[16]  U. Baumann,et al.  Crystal structure of the yeast eIF4A-eIF4G complex: An RNA-helicase controlled by protein–protein interactions , 2008, Proceedings of the National Academy of Sciences.

[17]  T. von der Haar,et al.  Optimized Protein Extraction for Quantitative Proteomics of Yeasts , 2007, PloS one.

[18]  Padchanee Sangthong,et al.  Distributed control for recruitment, scanning and subunit joining steps of translation initiation , 2007, Nucleic acids research.

[19]  C. Cole,et al.  The DEAD-Box RNA Helicase Dbp5 Functions in Translation Termination , 2007, Science.

[20]  A. Lambowitz,et al.  Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. , 2007, Journal of molecular biology.

[21]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[22]  O. Glebov,et al.  N-terminal region of Saccharomyces cerevisiae eRF3 is essential for the functioning of the eRF1/eRF3 complex beyond translation termination , 2006, BMC Molecular Biology.

[23]  J. McCarthy,et al.  Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. , 2006, Journal of molecular biology.

[24]  C. Cole,et al.  Unravelling mRNA export , 2006, Nature Cell Biology.

[25]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[26]  A. Hinnebusch Translational regulation of GCN4 and the general amino acid control of yeast. , 2005, Annual review of microbiology.

[27]  D. McNabb,et al.  Dual Luciferase Assay System for Rapid Assessment of Gene Expression in Saccharomyces cerevisiae , 2005, Eukaryotic Cell.

[28]  R. Beynon,et al.  Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides , 2005, Nature Methods.

[29]  Daniel Herschlag,et al.  Dissecting eukaryotic translation and its control by ribosome density mapping , 2005, Nucleic acids research.

[30]  Mark Muldoon,et al.  Dynamics and processivity of 40S ribosome scanning on mRNA in yeast , 2004, Molecular microbiology.

[31]  Jon R Lorsch,et al.  The molecular mechanics of eukaryotic translation. , 2003, Annual review of biochemistry.

[32]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[33]  M. Kozak,et al.  Pushing the limits of the scanning mechanism for initiation of translation , 2002, Gene.

[34]  J. McCarthy,et al.  Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap‐complex function , 2002, Molecular microbiology.

[35]  P. Silver,et al.  Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signaling. , 2002, Genetics.

[36]  C. Proud,et al.  Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase , 2001, The EMBO journal.

[37]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[38]  J. McCarthy,et al.  Posttranscriptional Control of Gene Expression in Yeast , 1998, Microbiology and Molecular Biology Reviews.

[39]  G. Bellí,et al.  Functional analysis of yeast essential genes using a promoter‐substitution cassette and the tetracycline‐regulatable dual expression system , 1998, Yeast.

[40]  M. Minet,et al.  Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro , 1997, Molecular and cellular biology.

[41]  J. de la Cruz,et al.  The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Chuang,et al.  Requirement of the DEAD-Box Protein Ded1p for Messenger RNA Translation , 1997, Science.

[43]  Thomas Fiedler,et al.  A new efficient gene disruption cassette for repeated use in budding yeast , 1996, Nucleic Acids Res..

[44]  N. Zanchin,et al.  Characterization of the in Vivo Phosphorylation Sites of the mRNA·Cap-binding Complex Proteins Eukaryotic Initiation Factor-4E and p20 in Saccharomyces cerevisiae(*) , 1995, The Journal of Biological Chemistry.

[45]  Christopher G. Proud,et al.  The highly acidic C-terminal region of the yeast initiation factor subunit 2 α (eIF-2 α) contains casein kinase phosphorylation sites and is essential for maintaining normal regulation of GCN4 , 1995 .

[46]  T. A. Brown,et al.  A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. , 1990, Nucleic acids research.

[47]  Ronald W. Davis,et al.  The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation , 1989, Cell.

[48]  R Heinrich,et al.  Mathematical modelling of translation of mRNA in eucaryotes; steady state, time-dependent processes and application to reticulocytes. , 1980, Journal of theoretical biology.

[49]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[50]  W. Merrick,et al.  Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. , 1976, The Journal of biological chemistry.

[51]  A. Pipkin,et al.  Kinetics of biopolymerization on nucleic acid templates , 1968, Biopolymers.

[52]  Robert J Beynon,et al.  Absolute Multiplexed Protein Quantification Using QconCAT Technology , 2012, Quantitative Methods in Proteomics.

[53]  Katrin Marcus,et al.  Quantitative Methods in Proteomics , 2012, Methods in Molecular Biology.

[54]  R. Cuesta,et al.  The regulation of protein synthesis in cancer. , 2009, Progress in molecular biology and translational science.

[55]  J. Blenis,et al.  Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. , 2009, Progress in molecular biology and translational science.

[56]  N. Sonenberg,et al.  1 Origins and Principles of Translational Control , 2007 .

[57]  N. Sonenberg,et al.  Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. , 2005, Genes & development.

[58]  C. Proud,et al.  Translation factors: in sickness and in health. , 2004, Trends in biochemical sciences.

[59]  T. Haar A quantitative estimation of the global translational activity in logarithmically growing yeast cells , 2022 .