Clustering of variables around latent components: an application in consumer science
暂无分享,去创建一个
[1] V. Framondino,et al. Ruolo dell'analisi sensoriale nella definizione delle caratteristiche dei prodotti tipici: l'esempio dei formaggi trentini , 2004 .
[2] Karin Sahmer. autour de composantes latentes. Application en evaluation sensorielle , 2006 .
[3] D. B. Hibbert. Multivariate calibration and classification - T. Naes, T. Isaksson, T. Fearn and T. Davis, NIR Publications, Chichester, 2002, ISBN 0 9528666 2 5, UK @$45.00, US$75.00 , 2004 .
[4] W. Krzanowski. Selection of Variables to Preserve Multivariate Data Structure, Using Principal Components , 1987 .
[5] Harald Martens,et al. Regression of a data matrix on descriptors of both its rows and of its columns via latent variables: L-PLSR , 2005, Comput. Stat. Data Anal..
[6] Evelyne Vigneau,et al. A cluster approach to analyze preference data: Choice of the number of clusters , 2006 .
[7] John C. Gower,et al. Measures of Similarity, Dissimilarity and Distance , 1985 .
[8] R. Singleton,et al. Sensory Evaluation by Quantitative Descriptive Analysis , 2008 .
[9] R. Sabatier,et al. Refined approximations to permutation tests for multivariate inference , 1995 .
[10] Evelyne Vigneau,et al. Segmentation of a panel of consumers using clustering of variables around latent directions of preference , 2001 .
[11] John W. Graham,et al. Multiple imputation in multivariate research. , 2000 .
[12] J. Overall,et al. Applied multivariate analysis , 1983 .
[13] Martin Kermit,et al. 3-Way and 3-block PLS regressions in consumer preference analysis , 2006 .
[14] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[15] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[16] S. Wold,et al. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .
[17] E. Vigneau,et al. Clustering of Variables Around Latent Components , 2003 .
[18] R Hardy,et al. Methods for handling missing data , 2009 .
[19] H. L. Le Roy,et al. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .
[20] Michel Tenenhaus,et al. PLS methodology to study relationships between hedonic judgements and product characteristics , 2005 .
[21] Pascal Schlich,et al. Defining and Validating Assessor Compromises About Product Distances and Attribute Correlations , 1996 .
[22] Ian T. Jolliffe,et al. VARIABLE SELECTION AND INTERPRETATION OF COVARIANCE PRINCIPAL COMPONENTS , 2001 .
[23] H. Wold. Path Models with Latent Variables: The NIPALS Approach , 1975 .
[24] C. Delahunty,et al. Which juice is 'healthier'? A consumer study of probiotic non-dairy juice drinks , 2004 .
[25] G. Smith,et al. Food research and data analysis , 1983 .
[26] M. Kendall. A course in multivariate analysis , 1958 .
[27] Sabatier Robert,et al. Principal component analysis with instrumental variables as a tool for modelling composition data Daniel , 1989 .
[28] Rolph E. Anderson,et al. Multivariate data analysis with readings (2nd ed.) , 1986 .
[29] Evelyne Vigneau,et al. Une nouvelle distance entre variables. Application en classification , 1998 .
[30] H. J. H. MacFie,et al. Preference mapping in practice , 1994 .
[31] B. Kowalski,et al. Partial least-squares regression: a tutorial , 1986 .
[32] P. D. Bricker,et al. Individual Differences and Multidimensional Scaling of Speech Perception Data , 1971 .
[33] E. B. Zechmeister,et al. Research Methods in Psychology. , 1990 .
[34] Vincenzo Esposito Vinzi,et al. Two-step PLS regression for L-structured data: an application in the cosmetic industry , 2007, Stat. Methods Appl..
[36] Evelyne Vigneau,et al. Classification de variables autour de composantes latentes , 2006 .
[37] Liisa Lähteenmäki,et al. Food neophobia among the Finns and related responses to familiar and unfamiliar foods , 2001 .
[38] Classification d'un ensemble de variables qualitatives , 1998 .
[39] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[40] Desire L. Massart,et al. Feature selection in principal component analysis of analytical data , 2002 .
[41] J. Schafer,et al. Missing data: our view of the state of the art. , 2002, Psychological methods.
[42] Anette Kistrup Thybo,et al. Explaining Danish children's preferences for apples using instrumental, sensory and demographic/behavioural data , 2004 .
[43] Ian T. Jolliffe,et al. Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .
[44] D. Rubin,et al. Statistical Analysis with Missing Data , 1988 .
[45] Gabriele Soffritti,et al. Hierarchical clustering of variables: a comparison among strategies of analysis , 1999 .
[46] Evelyne Vigneau,et al. Segmentation of consumers taking account of external data. A clustering of variables approach , 2002 .
[47] Flavia Gasperi,et al. Judge selection for hard and semi-hard cheese sensory evaluation , 2000 .
[48] Evelyne Vigneau,et al. Clustering of variables, application in consumer and sensory studies , 1997 .
[49] Y. Escoufier. LE TRAITEMENT DES VARIABLES VECTORIELLES , 1973 .
[50] Frank Westad,et al. Gender specific preferences and attitudes towards meat , 2002 .
[51] Brian Everitt,et al. Cluster analysis , 1974 .