Isometric Immersions of Surfaces with Two Classes of Metrics and Negative Gauss Curvature
暂无分享,去创建一个
[1] Albert Y. Zomaya,et al. Partial Differential Equations , 2007, Explorations in Numerical Analysis.
[2] C. Christoforou. BV weak solutions to Gauss–Codazzi system for isometric immersions , 2012 .
[3] T. Poole. The Local Isometric Embedding Problem for 3-Dimensional Riemannian Manifolds with Cleanly Vanishing Curvature , 2010 .
[4] Robert Ghrist,et al. CONFIGURATION SPACES, BRAIDS, AND ROBOTICS , 2009 .
[5] Gui-Qiang G. Chen,et al. WEAK CONTINUITY OF THE GAUSS-CODAZZI-RICCI SYSTEM FOR ISOMETRIC EMBEDDING , 2009, 0904.3583.
[6] L. Mahadevan,et al. Localized and extended deformations of elastic shells , 2008, Proceedings of the National Academy of Sciences.
[7] Marshall Slemrod,et al. Isometric Immersions and Compensated Compactness , 2008, 0805.2433.
[8] Delfino Codazzi,et al. Sulle coordinate curvilinee d’ una superficie e dello spazio , 2007 .
[9] Jia-Xing Hong,et al. Isometric Embedding of Riemannian Manifolds in Euclidean Spaces , 2006 .
[10] Sorin Mardare. On Pfaff systems with Lp coefficients and their applications in differential geometry , 2005 .
[11] Qing Han. On the isometric embedding of surfaces with Gauss curvature changing sign cleanly , 2005 .
[12] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[13] P. Souganidis,et al. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .
[14] A. Polyanin,et al. Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .
[15] B. Perthame,et al. Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .
[16] Changshou Lin. The local isometric embedding in R3 of two‐dimensional riemannian manifolds with gaussian curvature changing sign cleanly , 1986 .
[17] M. Gromov,et al. Partial Differential Relations , 1986 .
[18] Peizhu Luo,et al. CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .
[19] R. J. Diperna. Compensated compactness and general systems of conservation laws , 1985 .
[20] P. Griffiths,et al. Characteristics and existence of isometric embeddings , 1983 .
[21] R. J. Diperna,et al. Convergence of the viscosity method for isentropic gas dynamics , 1983 .
[22] E. Berger,et al. Some isometric embedding and rigidity results for Riemannian manifolds. , 1981, Proceedings of the National Academy of Sciences of the United States of America.
[23] A. S. Vinogradskiĭ. Boundary Properties of Surfaces with Slowly Varying Negative Curvature , 1970 .
[24] HONG JIAXING,et al. REALIZATION IN M OF COMPLETE RIEMANNIAN MANIFOLDS WITH NEGATIVE CURVATURE , 2016 .
[25] David Abend,et al. Maximum Principles In Differential Equations , 2016 .
[26] Gui-Qiang G. Chen,et al. Entropy , Elasticity , and the Isometric Embedding Problem : M 3 ! R 6 , 2013 .
[27] Yu. D. Burago,et al. The Geometry of Surfaces in Euclidean Spaces , 1992 .
[28] Ė. R. Rozendorn. Surfaces of Negative Curvature , 1992 .
[29] G. Nakamura,et al. Local smooth isometric embeddings of low dimensional Riemannian manifolds into Euclidean spaces , 1989 .
[30] J. Ball. A version of the fundamental theorem for young measures , 1989 .
[31] K. Yosida,et al. Local isometric embedding problem of Riemannian 3-manifold into R6 , 1986 .
[32] Luc Tartar,et al. Compensated compactness and applications to partial differential equations , 1979 .
[33] F. Murat,et al. Compacité par compensation , 1978 .
[34] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .
[35] E. Cartan,et al. Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien , 1928 .