Isometric Immersions of Surfaces with Two Classes of Metrics and Negative Gauss Curvature

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  C. Christoforou BV weak solutions to Gauss–Codazzi system for isometric immersions , 2012 .

[3]  T. Poole The Local Isometric Embedding Problem for 3-Dimensional Riemannian Manifolds with Cleanly Vanishing Curvature , 2010 .

[4]  Robert Ghrist,et al.  CONFIGURATION SPACES, BRAIDS, AND ROBOTICS , 2009 .

[5]  Gui-Qiang G. Chen,et al.  WEAK CONTINUITY OF THE GAUSS-CODAZZI-RICCI SYSTEM FOR ISOMETRIC EMBEDDING , 2009, 0904.3583.

[6]  L. Mahadevan,et al.  Localized and extended deformations of elastic shells , 2008, Proceedings of the National Academy of Sciences.

[7]  Marshall Slemrod,et al.  Isometric Immersions and Compensated Compactness , 2008, 0805.2433.

[8]  Delfino Codazzi,et al.  Sulle coordinate curvilinee d’ una superficie e dello spazio , 2007 .

[9]  Jia-Xing Hong,et al.  Isometric Embedding of Riemannian Manifolds in Euclidean Spaces , 2006 .

[10]  Sorin Mardare On Pfaff systems with Lp coefficients and their applications in differential geometry , 2005 .

[11]  Qing Han On the isometric embedding of surfaces with Gauss curvature changing sign cleanly , 2005 .

[12]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[13]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[14]  A. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .

[15]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[16]  Changshou Lin The local isometric embedding in R3 of two‐dimensional riemannian manifolds with gaussian curvature changing sign cleanly , 1986 .

[17]  M. Gromov,et al.  Partial Differential Relations , 1986 .

[18]  Peizhu Luo,et al.  CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .

[19]  R. J. Diperna Compensated compactness and general systems of conservation laws , 1985 .

[20]  P. Griffiths,et al.  Characteristics and existence of isometric embeddings , 1983 .

[21]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[22]  E. Berger,et al.  Some isometric embedding and rigidity results for Riemannian manifolds. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. S. Vinogradskiĭ Boundary Properties of Surfaces with Slowly Varying Negative Curvature , 1970 .

[24]  HONG JIAXING,et al.  REALIZATION IN M OF COMPLETE RIEMANNIAN MANIFOLDS WITH NEGATIVE CURVATURE , 2016 .

[25]  David Abend,et al.  Maximum Principles In Differential Equations , 2016 .

[26]  Gui-Qiang G. Chen,et al.  Entropy , Elasticity , and the Isometric Embedding Problem : M 3 ! R 6 , 2013 .

[27]  Yu. D. Burago,et al.  The Geometry of Surfaces in Euclidean Spaces , 1992 .

[28]  Ė. R. Rozendorn Surfaces of Negative Curvature , 1992 .

[29]  G. Nakamura,et al.  Local smooth isometric embeddings of low dimensional Riemannian manifolds into Euclidean spaces , 1989 .

[30]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[31]  K. Yosida,et al.  Local isometric embedding problem of Riemannian 3-manifold into R6 , 1986 .

[32]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[33]  F. Murat,et al.  Compacité par compensation , 1978 .

[34]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[35]  E. Cartan,et al.  Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien , 1928 .