Complexity Classification of Two-Qubit Commuting Hamiltonians

We classify two-qubit commuting Hamiltonians in terms of their computational complexity. Suppose one has a two-qubit commuting Hamiltonian H which one can apply to any pair of qubits, starting in a computational basis state. We prove a dichotomy theorem: either this model is efficiently classically simulable or it allows one to sample from probability distributions which cannot be sampled from classically unless the polynomial hierarchy collapses. Furthermore, the only simulable Hamiltonians are those which fail to generate entanglement. This shows that generic two-qubit commuting Hamiltonians can be used to perform computational tasks which are intractable for classical computers under plausible assumptions. Our proof makes use of new postselection gadgets and Lie theory.

[1]  Dan J. Shepherd,et al.  Binary Matroids and Quantum Probability Distributions , 2010, ArXiv.

[2]  Keisuke Fujii,et al.  On the hardness of classically simulating the one clean qubit model , 2013, Physical review letters.

[3]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Takeshi Yamazaki,et al.  Commuting quantum circuits with few outputs are unlikely to be classically simulatable , 2014, Quantum Inf. Comput..

[5]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[6]  A. Harrow,et al.  Practical scheme for quantum computation with any two-qubit entangling gate. , 2002, Physical Review Letters.

[7]  Laura Mančinska,et al.  Characterization of universal two-qubit hamiltonian , 2011 .

[8]  Debbie W. Leung,et al.  Characterization of universal two-qubit Hamiltonians , 2011, Quantum Inf. Comput..

[9]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[10]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[11]  Leonid A. Levin,et al.  The Tale of One-Way Functions , 2000, Probl. Inf. Transm..

[12]  Ashley Montanaro,et al.  Complexity Classification of Local Hamiltonian Problems , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[13]  Stephen P. Jordan,et al.  Permutational quantum computing , 2009, Quantum Inf. Comput..

[14]  Bill Fefferman,et al.  The Power of Quantum Fourier Sampling , 2015, TQC.

[15]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[18]  E. Cartan,et al.  La théorie des groupes finis et continus et l'Analysis situs , 1952 .

[19]  Daniel James Shepherd,et al.  Quantum Complexity: restrictions on algorithms and architectures , 2010, ArXiv.

[20]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[21]  M. Nielsen,et al.  Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries , 2001, quant-ph/0106064.

[22]  Lane A. Hemaspaandra,et al.  Threshold Computation and Cryptographic Security , 1993, ISAAC.

[23]  Gil Kalai,et al.  How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation , 2011, ArXiv.

[24]  A. Beardon The Geometry of Discrete Groups , 1995 .

[25]  Clifford J. Earle Review: Alan F. Beardon, The geometry of discrete groups , 1988 .

[26]  Larry J. Stockmeyer,et al.  The complexity of approximate counting , 1983, STOC.

[27]  Keisuke Fujii,et al.  Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error. , 2014, Physical review letters.

[28]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[29]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[30]  D. Aharonov,et al.  Polynomial Quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane Preliminary Version , 2008 .

[31]  David P. DiVincenzo,et al.  Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..

[32]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[33]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[34]  Dorit Aharonov,et al.  The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.

[35]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[36]  Nik Weaver On the universality of almost every quantum logic gate , 2000 .

[37]  Bela Bauer,et al.  Universality of single quantum gates , 2014, 1404.7822.

[38]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[39]  Maarten Van den Nest,et al.  Commuting quantum circuits: efficient classical simulations versus hardness results , 2013, Quantum Inf. Comput..

[40]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[41]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.