Many-Sorted Equivalence of Shiny and Strongly Polite Theories
暂无分享,去创建一个
[1] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[2] Calogero G. Zarba,et al. Combining Data Structures with Nonstably Infinite Theories Using Many-Sorted Logic , 2005, FroCoS.
[4] Calogero G. Zarba,et al. Combining Non-Stably Infinite Theories , 2003, FTP.
[5] Pascal Fontaine. Combinations of Theories for Decidable Fragments of First-Order Logic , 2009, FroCoS.
[6] Derek C. Oppen,et al. Complexity, Convexity and Combinations of Theories , 1980, Theor. Comput. Sci..
[7] Greg Nelson,et al. Simplification by Cooperating Decision Procedures , 1979, TOPL.
[8] Cesare Tinelli,et al. A New Correctness Proof of the {Nelson-Oppen} Combination Procedure , 1996, FroCoS.
[9] Elchanan Mossel,et al. Sorting and Selection in Posets , 2007, SIAM J. Comput..
[10] J. Hopcroft,et al. Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.
[11] Pascal Fontaine,et al. Combining Theories: The Ackerman and Guarded Fragments , 2011, FroCoS.
[12] Calogero G. Zarba,et al. Combining Nonstably Infinite Theories , 2005, Journal of Automated Reasoning.
[13] Clark W. Barrett,et al. Polite Theories Revisited , 2010, LPAR.
[14] J. Hopcroft,et al. Efficient algorithms for graph manipulation , 1971 .
[15] Christophe Ringeissen,et al. A Gentle Non-disjoint Combination of Satisfiability Procedures , 2014, IJCAR.
[16] João Rasga,et al. Revisiting the Equivalence of Shininess and Politeness , 2013, LPAR.
[17] Christophe Ringeissen,et al. Frontiers of Combining Systems , 2013, Lecture Notes in Computer Science.
[18] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .