Many-Sorted Equivalence of Shiny and Strongly Polite Theories

Herein we close the question of the equivalence of shiny and strongly polite theories by establishing that, for theories with a decidable quantifier-free satisfiability problem, the set of many-sorted shiny theories coincides with the set of many-sorted strongly polite theories. Capitalizing on this equivalence, we obtain a Nelson–Oppen combination theorem for many-sorted shiny theories.

[1]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[2]  Calogero G. Zarba,et al.  Combining Data Structures with Nonstably Infinite Theories Using Many-Sorted Logic , 2005, FroCoS.

[4]  Calogero G. Zarba,et al.  Combining Non-Stably Infinite Theories , 2003, FTP.

[5]  Pascal Fontaine Combinations of Theories for Decidable Fragments of First-Order Logic , 2009, FroCoS.

[6]  Derek C. Oppen,et al.  Complexity, Convexity and Combinations of Theories , 1980, Theor. Comput. Sci..

[7]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[8]  Cesare Tinelli,et al.  A New Correctness Proof of the {Nelson-Oppen} Combination Procedure , 1996, FroCoS.

[9]  Elchanan Mossel,et al.  Sorting and Selection in Posets , 2007, SIAM J. Comput..

[10]  J. Hopcroft,et al.  Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.

[11]  Pascal Fontaine,et al.  Combining Theories: The Ackerman and Guarded Fragments , 2011, FroCoS.

[12]  Calogero G. Zarba,et al.  Combining Nonstably Infinite Theories , 2005, Journal of Automated Reasoning.

[13]  Clark W. Barrett,et al.  Polite Theories Revisited , 2010, LPAR.

[14]  J. Hopcroft,et al.  Efficient algorithms for graph manipulation , 1971 .

[15]  Christophe Ringeissen,et al.  A Gentle Non-disjoint Combination of Satisfiability Procedures , 2014, IJCAR.

[16]  João Rasga,et al.  Revisiting the Equivalence of Shininess and Politeness , 2013, LPAR.

[17]  Christophe Ringeissen,et al.  Frontiers of Combining Systems , 2013, Lecture Notes in Computer Science.

[18]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .