A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains

This work concerns controlled Markov chains with finite state and action spaces. The transition law satisfies the simultaneous Doeblin condition, and the performance of a control policy is measured by the (long-run) risk-sensitive average cost criterion associated to a positive, but otherwise arbitrary, risk sensitivity coefficient. Within this context, the optimal risk-sensitive average cost is characterized via a minimization problem in a finite-dimensional Euclidean space.

[1]  Daniel Hernández-Hernández,et al.  A characterization of exponential functionals in finite Markov chains , 2004, Math. Methods Oper. Res..

[2]  Lukasz Stettner,et al.  Risk-Sensitive Control of Discrete-Time Markov Processes with Infinite Horizon , 1999, SIAM J. Control. Optim..

[3]  S. Pliska,et al.  Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management , 1999, Math. Methods Oper. Res..

[4]  W. Fleming,et al.  Optimal long term growth rate of expected utility of wealth , 1999 .

[5]  S. Pliska,et al.  Risk-Sensitive Dynamic Asset Management , 1999 .

[6]  Rolando Cavazos-Cadena,et al.  Controlled Markov chains with risk-sensitive criteria: Average cost, optimality equations, and optimal solutions , 1999, Math. Methods Oper. Res..

[7]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[8]  W. Fleming,et al.  Risk sensitive control of finite state machines on an infinite horizon. I , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[9]  S. Marcus,et al.  Risk sensitive control of Markov processes in countable state space , 1996 .

[10]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[11]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[12]  D. Gale A mathematical theory of optimal economic development , 1968 .

[13]  E. Fernández-Gaucherand,et al.  Risk-Sensitive Optimal Control in Communicating Average Markov Decision Chains , 2005 .

[14]  Daniel Hernández-Hernández,et al.  Solution to the risk-sensitive average optimality equation in communicating Markov decision chains with finite state space: An alternative approach , 2003, Math. Methods Oper. Res..

[15]  S. Marcus,et al.  Risk Sensitive Markov Decision Processes , 1997 .

[16]  O. Hernondex-lerma,et al.  Adaptive Markov Control Processes , 1989 .

[17]  Onésimo Hernández-Lerma,et al.  Controlled Markov Processes , 1965 .