Interactive Machine Learning in Data Exploitation

The goal of interactive machine learning is to help scientists and engineers exploit more specialized data from within their deployed environment in less time, with greater accuracy and fewer costs. A basic introduction to the main components is provided here, untangling the many ideas that must be combined to produce practical interactive learning systems. This article also describes recent developments in machine learning that have significantly advanced the theoretical and practical foundations for the next generation of interactive tools.

[1]  Jeff Simmons,et al.  Graph-cut methods for grain boundary segmentation , 2011 .

[2]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..

[3]  Ben Taskar,et al.  Learning from ambiguously labeled images , 2009, CVPR.

[4]  James Theiler,et al.  Quantitative comparison of quadratic covariance-based anomalous change detectors. , 2008, Applied optics.

[5]  Adam Tauman Kalai,et al.  Adaptively Learning the Crowd Kernel , 2011, ICML.

[6]  Ian Davidson,et al.  Constrained Clustering: Advances in Algorithms, Theory, and Applications , 2008 .

[7]  Jean Ponce,et al.  Segmentation by transduction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Jingrui He,et al.  An effective framework for characterizing rare categories , 2012, Frontiers of Computer Science.

[9]  Heinz-Otto Peitgen,et al.  IWT-interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray-scale images , 2003, SPIE Medical Imaging.

[10]  John Platt,et al.  ALADIN: Active Learning of Anomalies to Detect Intrusion , 2008 .

[11]  Zhengdong Lu,et al.  Pairwise Constraints as Priors in Probabilistic Clustering , 2008 .

[12]  Daniel Heim,et al.  Detection and Segmentation of Cell Nuclei in Virtual Microscopy Images: A Minimum-Model Approach , 2012, Scientific Reports.

[13]  Guillermo Sapiro,et al.  A Geodesic Framework for Fast Interactive Image and Video Segmentation and Matting , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[14]  Sanjoy Dasgupta,et al.  Hierarchical sampling for active learning , 2008, ICML '08.

[15]  Bernhard Schölkopf,et al.  A Discussion of Semi-Supervised Learning and Transduction , 2006, Semi-Supervised Learning.

[16]  Jingrui He,et al.  Nearest-Neighbor-Based Active Learning for Rare Category Detection , 2007, NIPS.

[17]  Terry Caelli,et al.  Shape Tracking and Production Using Hidden Markov Models , 2001, Int. J. Pattern Recognit. Artif. Intell..

[18]  Tomer Hertz,et al.  Boosting margin based distance functions for clustering , 2004, ICML.

[19]  Jianlin Cheng,et al.  HMMEditor: a visual editing tool for profile hidden Markov model , 2008, BMC Genomics.

[20]  Andrew Slater,et al.  The Learning Behind Gmail Priority Inbox , 2010 .

[21]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[22]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[23]  Desney S. Tan,et al.  Interactive optimization for steering machine classification , 2010, CHI.

[24]  Hao Huang,et al.  RADAR: Rare Category Detection via Computation of Boundary Degree , 2011, PAKDD.

[25]  David R. Thompson,et al.  Semi‐supervised Eigenbasis novelty detection , 2013, Stat. Anal. Data Min..

[26]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[27]  Shaogang Gong,et al.  A Unifying Theory of Active Discovery and Learning , 2012, ECCV.

[28]  Reid Porter,et al.  Density-based similarity measures for content based search , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[29]  W. M. Wan,et al.  The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD , 2011 .

[30]  Don R. Hush,et al.  A Classification Framework for Anomaly Detection , 2005, J. Mach. Learn. Res..

[31]  Steve Hanneke,et al.  A bound on the label complexity of agnostic active learning , 2007, ICML '07.

[32]  James Theiler,et al.  Resampling approach for anomaly detection in multispectral images , 2003, SPIE Defense + Commercial Sensing.

[33]  Neal R. Harvey,et al.  GENIE: a hybrid genetic algorithm for feature classification in multispectral images , 2000, SPIE Optics + Photonics.

[34]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Camille Couprie,et al.  Power Watershed: A Unifying Graph-Based Optimization Framework , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Raymond J. Mooney,et al.  Online Structure Learning for Markov Logic Networks , 2011, ECML/PKDD.

[37]  Desney S. Tan,et al.  EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers , 2009, CHI.

[38]  Andrew W. Moore,et al.  Active Learning for Anomaly and Rare-Category Detection , 2004, NIPS.

[39]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[40]  Feiping Nie,et al.  Learning a Mahalanobis distance metric for data clustering and classification , 2008, Pattern Recognit..

[41]  Shankar Vembu,et al.  Learning to predict combinatorial structures , 2009, ArXiv.

[42]  John C. Duchi,et al.  The Generalization Ability of Online Algorithms for Dependent Data , 2011, IEEE Transactions on Information Theory.

[43]  Claudio Gentile,et al.  On the generalization ability of on-line learning algorithms , 2001, IEEE Transactions on Information Theory.

[44]  Ben Taskar,et al.  Learning structured prediction models: a large margin approach , 2005, ICML.

[45]  Jerry Alan Fails,et al.  Interactive machine learning , 2003, IUI '03.

[46]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[47]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[48]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[49]  Nathan Ratliff,et al.  Online) Subgradient Methods for Structured Prediction , 2007 .

[50]  Lise Getoor,et al.  Link mining: a survey , 2005, SKDD.

[51]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2007, ICML '07.

[52]  Gilles Blanchard,et al.  Semi-Supervised Novelty Detection , 2010, J. Mach. Learn. Res..

[53]  Carla E. Brodley,et al.  Visualization and interactive feature selection for unsupervised data , 2000, KDD '00.

[54]  Hema Raghavan,et al.  InterActive Feature Selection , 2005, IJCAI.

[55]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[56]  Bianca Zadrozny,et al.  Outlier detection by active learning , 2006, KDD '06.

[57]  Srinivas C. Turaga,et al.  Machines that learn to segment images: a crucial technology for connectomics , 2010, Current Opinion in Neurobiology.

[58]  Andrew McCallum,et al.  Semi-Supervised Clustering with User Feedback , 2003 .

[59]  He He,et al.  Imitation Learning by Coaching , 2012, NIPS.

[60]  Ambuj Tewari,et al.  On the Generalization Ability of Online Strongly Convex Programming Algorithms , 2008, NIPS.

[61]  L. BartlettP. The sample complexity of pattern classification with neural networks , 2006 .

[62]  Gideon S. Mann,et al.  Learning from labeled features using generalized expectation criteria , 2008, SIGIR '08.

[63]  Wei-Ying Ma,et al.  Learning a semantic space from user's relevance feedback for image retrieval , 2003, IEEE Trans. Circuits Syst. Video Technol..

[64]  Katsumi Tanaka,et al.  Interactive Visual Clustering for Relational Data , 2008 .

[65]  Liang Lin,et al.  I2T: Image Parsing to Text Description , 2010, Proceedings of the IEEE.

[66]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[67]  Stefan Schaal,et al.  Is imitation learning the route to humanoid robots? , 1999, Trends in Cognitive Sciences.

[68]  Geoffrey J. Gordon,et al.  No-Regret Reductions for Imitation Learning and Structured Prediction , 2010, ArXiv.

[69]  Hans-Peter Kriegel,et al.  Visual classification: an interactive approach to decision tree construction , 1999, KDD '99.

[70]  Neal R. Harvey,et al.  Interactive image quantification tools in nuclear material forensics , 2011, Electronic Imaging.

[71]  Noel E. O'Connor,et al.  Toward automated evaluation of interactive segmentation , 2011, Comput. Vis. Image Underst..

[72]  Andrew McCallum,et al.  Active Learning by Labeling Features , 2009, EMNLP.

[73]  M. Erwig,et al.  Probabilistic Functional Programming in Haskell , 2005 .

[74]  Shih-Fu Chang,et al.  CuZero: embracing the frontier of interactive visual search for informed users , 2008, MIR '08.

[75]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[76]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.

[77]  Ian H. Witten,et al.  Interactive machine learning: letting users build classifiers , 2002, Int. J. Hum. Comput. Stud..

[78]  Marc Pollefeys,et al.  Efficient Structured Prediction with Latent Variables for General Graphical Models , 2012, ICML.

[79]  Desney S. Tan,et al.  Learning to Learn: Algorithmic Inspirations from Human Problem Solving , 2012, AAAI.

[80]  Bin Fu,et al.  On the complexity of Rocchio's similarity-based relevance feedback algorithm , 2007 .

[81]  Yishay Mansour,et al.  Active sampling for multiple output identification , 2006, Machine Learning.

[82]  John Langford,et al.  Importance weighted active learning , 2008, ICML '09.

[83]  John T. Stasko,et al.  The Science of Interaction , 2009, Inf. Vis..

[84]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[85]  Ludovic Denoyer,et al.  Structured prediction with reinforcement learning , 2009, Machine Learning.

[86]  Neal R. Harvey,et al.  Toward interactive search in remote sensing imagery , 2010, Defense + Commercial Sensing.

[87]  Claude Sammut,et al.  A Framework for Behavioural Cloning , 1995, Machine Intelligence 15.

[88]  Yll Haxhimusa,et al.  Interactive Labeling of Image Segmentation Hierarchies , 2012, DAGM/OAGM Symposium.

[89]  David Silver,et al.  Learning to search: Functional gradient techniques for imitation learning , 2009, Auton. Robots.

[90]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[91]  H. Sebastian Seung,et al.  Learning to Agglomerate Superpixel Hierarchies , 2011, NIPS.

[92]  Charles Elkan,et al.  Learning classifiers from only positive and unlabeled data , 2008, KDD.

[93]  Weng-Keen Wong,et al.  Category detection using hierarchical mean shift , 2009, KDD.

[94]  John Langford,et al.  Search-based structured prediction , 2009, Machine Learning.

[95]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.