Efficient Computation of Roots in Finite Fields

We present an algorithm to compute rth roots in $$\mathbb{F}_{q^m}$$ with complexity Õ[(log m + r log q) m log q] if (m,q) = 1 and either (q(q−1),r) = 1 or r|(q−1) and ((q−1)/r,r) = 1. This compares well to previously known algorithms, which need O(rm3 log3q) steps.

[1]  Jean-Jacques Quisquater,et al.  A new identity based signcryption scheme from pairings , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[2]  ItohToshiya,et al.  A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases , 1988 .

[3]  Christof Paar,et al.  Itoh-Tsujii Inversion in Standard Basis and Its Application in Cryptography and Codes , 2002, Des. Codes Cryptogr..

[4]  Steven D. Galbraith,et al.  Arithmetic on superelliptic curves , 2002 .

[5]  Gary L. Miller,et al.  On taking roots in finite fields , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[6]  Nigel P. Smart,et al.  AN IDENTITY BASED AUTHENTICATED KEY AGREEMENT PROTOCOL BASED ON THE WEIL PAIRING , 2001 .

[7]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[8]  Alfred Menezes,et al.  Elliptic curve public key cryptosystems , 1993, The Kluwer international series in engineering and computer science.

[9]  Joachim von zur Gathen,et al.  Computing special powers in finite fields , 2003, Math. Comput..

[10]  T. Itoh,et al.  A Fast Algorithm for Computing Multiplicative Inverses in GF(2^m) Using Normal Bases , 1988, Inf. Comput..

[11]  Joachim von zur Gathen,et al.  Algorithms for Exponentiation in Finite Fields , 2000, J. Symb. Comput..

[12]  A. Brauer On addition chains , 1939 .

[13]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[14]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[15]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..