Convergence rates of the DPG method with reduced test space degree

This paper presents a duality theorem of the Aubin-Nitsche type for discontinuous Petrov-Galerkin (DPG) methods. This explains the numerically observed higher convergence rates in weaker norms. Considering the specific example of the mild-weak (or primal) DPG method for the Laplace equation, two further results are obtained. First, the DPG method continues to be solvable even when the test space degree is reduced, provided it is odd. Second, a non-conforming method of analysis is developed to explain the numerically observed convergence rates for a test space of reduced degree.

[1]  Leszek F. Demkowicz,et al.  A primal DPG method without a first-order reformulation , 2013, Comput. Math. Appl..

[2]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[3]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[4]  Weifeng Qiu,et al.  An analysis of the practical DPG method , 2011, Math. Comput..

[5]  Carsten Carstensen,et al.  A Posteriori Error Control for DPG Methods , 2014, SIAM J. Numer. Anal..

[6]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[7]  M. Fortin,et al.  A non‐conforming piecewise quadratic finite element on triangles , 1983 .

[8]  Rob Stevenson,et al.  A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form , 2015 .

[9]  Ignacio Muga,et al.  Dispersive and Dissipative Errors in the DPG Method with Scaled Norms for Helmholtz Equation , 2013, SIAM J. Sci. Comput..

[10]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[11]  Jay Gopalakrishnan Five lectures on DPG methods , 2013 .

[12]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[13]  J. Nitsche,et al.  Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[16]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.