Infinitely Scalable Multiport Interferometers

Component errors limit the scaling of multiport interferometers based on MZI meshes. These errors arise because imperfect MZIs cannot be perfectly programmed to the cross state. Here, we introduce two modified mesh architectures that overcome this limitation: (1) a 3-splitter MZI for generic errors, and (2) a broadband MZI+Crossing design for correlated errors. Because these designs allow for perfect realization of the cross state, the matrix fidelity no longer decreases with mesh size, allowing scaling to arbitrarily large meshes. The proposed architectures support progressive self-configuration, are more compact than previous MZI-doubling schemes, and do not require additional phase shifters. This eliminates a major obstacle to the development of very-large-scale linear photonic circuits.

[1]  John E. Bowers,et al.  Integrated microwave photonics , 2015, 2015 International Topical Meeting on Microwave Photonics (MWP).

[2]  D. Miller,et al.  Self-aligning universal beam coupler. , 2013, Optics express.

[3]  Jeff S. Lundeen,et al.  Arbitrary optical wave evolution with Fourier transforms and phase masks. , 2019, Optics express.

[4]  Nicolas A. F. Jaeger,et al.  Compact Broadband Directional Couplers Using Subwavelength Gratings , 2016, IEEE Photonics Journal.

[5]  David A. B. Miller,et al.  Parallel Programming of an Arbitrary Feedforward Photonic Network , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Ryan Hamerly,et al.  Accurate Self-Configuration of Rectangular Multiport Interferometers , 2021, Physical Review Applied.

[7]  Jonathan A. Jones,et al.  Drive-noise tolerant optical switching inspired by composite pulses. , 2020, Optics express.

[8]  David A. B. Miller,et al.  Matrix optimization on universal unitary photonic devices , 2018, Physical Review Applied.

[9]  Wim Bogaerts,et al.  Tolerant, broadband tunable 2 × 2 coupler circuit. , 2020, Optics express.

[10]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[11]  Takeo Maruyama,et al.  Reduction of Wavelength Dependence of Coupling Characteristics Using Si Optical Waveguide Curved Directional Coupler , 2014, Journal of Lightwave Technology.

[12]  Fan Zhang,et al.  Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. , 2015, Optics express.

[13]  I. Walmsley,et al.  Further compactifying linear optical unitaries , 2021, APL Photonics.

[14]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[15]  Shanhui Fan,et al.  Training of Photonic Neural Networks through In Situ Backpropagation , 2018, 2019 Conference on Lasers and Electro-Optics (CLEO).

[16]  Guangwen Yang,et al.  Quantum computational advantage using photons , 2020, Science.

[17]  Simei Mao,et al.  State-of-the-Art and Perspectives on Silicon Waveguide Crossings: A Review , 2020, Micromachines.

[18]  D. Dai,et al.  Ultra-Compact Broadband 2 × 2 3 dB Power Splitter Using a Subwavelength-Grating-Assisted Asymmetric Directional Coupler , 2020, Journal of Lightwave Technology.

[19]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[20]  David A. B. Miller,et al.  Setting up meshes of interferometers - reversed local light interference method , 2017 .

[21]  Ken Tanizawa,et al.  Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. , 2015, Optics express.

[22]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[23]  A. Haar Der Massbegriff in der Theorie der Kontinuierlichen Gruppen , 1933 .

[24]  Gregory R. Steinbrecher,et al.  High-fidelity quantum state evolution in imperfect photonic integrated circuits , 2015 .

[25]  S. Namiki,et al.  Low-Insertion-Loss and Power-Efficient 32 × 32 Silicon Photonics Switch With Extremely High-Δ Silica PLC Connector , 2019, Journal of Lightwave Technology.

[26]  James C. Gates,et al.  Using an imperfect photonic network to implement random unitaries , 2017 .

[27]  S. Praveen Kumar,et al.  Mitigating linear optics imperfections via port allocation and compilation , 2021, 2103.03183.

[28]  G. Lo,et al.  Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. , 2013, Optics express.

[29]  Dirk Englund,et al.  Hardware error correction for programmable photonics , 2021, ArXiv.

[30]  I Molina-Fernández,et al.  Wavelength independent multimode interference coupler. , 2013, Optics express.

[31]  Anthony Laing,et al.  Direct dialling of Haar random unitary matrices , 2015, 1506.06220.

[32]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[33]  Wu-Ki Tung,et al.  Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions in Classical and Quantum Physics , 1985 .

[34]  D. Celo,et al.  Three-mode synthesis of slab Gaussian beam in ultra-low-loss in-plane nanophotonic silicon waveguide crossing , 2017, 2017 IEEE 14th International Conference on Group IV Photonics (GFP).

[35]  Ryan Hamerly,et al.  Stability of Self-Configuring Large Multiport Interferometers , 2021, ArXiv.

[36]  A. Ribeiro,et al.  Demonstration of a 4 × 4-port self-configuring universal linear optical component , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[37]  Hui Chen,et al.  Low-Loss Multimode-Interference-Based Crossings for Silicon Wire Waveguides , 2006, IEEE Photonics Technology Letters.

[38]  Toshihiko Baba,et al.  Low Loss Intersection of Si Photonic Wire Waveguides , 2004 .

[39]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.