Quantum Theory of Chemical Reactivity

Publisher Summary In principle, two main methods can be used to predict the chemical reactivity of molecules, the collision theory and the transition state theory. The theoretical basis of the collision theory is certainly much more satisfactory than the basis of the transition state theory. But, the collision theory leads to very tedious calculations, and for this reason its practical interest is presently limited to the field of small molecules. On the contrary, the transition theory has been used extensively to predict the chemical reactivity of both small and large molecules, and thus is discussed in this chapter. The basis of the transition state theory is described for the case of small molecules. It is known that following this way, the constant rate of a chemical reaction appears to be the product of an equilibrium constant, and of the rate of decomposition of the intermediate complex. The chapter also presents the calculation of equilibrium constants. Many examples are given, including conformational equilibria, oxydo-reduction potential, and base strength. The role of the various factors involved is analyzed. Various examples of calculation of rate constants are outlined. These discussions are concerned with Walden inversion, substitutions on a carbon atom belonging to an aromatic ring, and photochemical reactions.

[1]  H. Eyring,et al.  The Non-Equilibrium Theory of Absolute Rates of Reaction1 , 1947 .

[2]  R. S. Mulliken,et al.  Hyperconjugation and Spectrum of the Benzenium Ion, Prototype of Aromatic Carbonium Ions1 , 1954 .

[3]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[4]  H. Eyring,et al.  Activated Complex Energies , 1957 .

[5]  I. Shavitt A Calculation of the Rates of the Ortho‐Para Conversions and Isotope Exchanges in Hydrogen , 1959 .

[6]  Kenichi Fukui,et al.  MO-Theoretical Approach to the Mechanism of Charge Transfer in the Process of Aromatic Substitutions , 1957 .

[7]  R. Brown 441. Charge-transfer complexes and the mechanism of aromatic substitution. Part I. General theory , 1959 .

[8]  R. Bell The tunnel effect correction for parabolic potential barriers , 1959 .

[9]  H. Eyring The Activated Complex and the Absolute Rate of Chemical Reactions. , 1935 .

[10]  E. Müller,et al.  Magnetochemische Untersuchungen organischer Stoffe. 1. Mitteilung. Zur Frage der Existenz von Biradikalen , 1935 .

[11]  H. C. Longuet-Higgins,et al.  Free valence in unsaturated hydrocarbons , 1951 .

[12]  F. H. Dickey,et al.  Oxidation of Branched-Chain Compounds , 1949 .

[13]  S. Mason,et al.  474. The heats and entropies of ionisation of some aromatic and N-heteroaromatic amines , 1959 .

[14]  A. Hofstra,et al.  The basicity of aromatic hydrocarbons. Part 1.—Unsubstituted polynuclear compounds , 1958 .

[15]  A. Farkas,et al.  Experiments on heavy hydrogen - V—The elementary reactions of light and heavy hydrogen. The thermal conversion of ortho-deuterium and the interaction of hydrogen and deuterium , 1935 .

[16]  S. Sato,et al.  Potential Energy Surface of the System of Three Atoms , 1955 .

[17]  SatoShin,et al.  A New Method of Drawing the Potential Energy Surface , 1955 .

[18]  R. Daudel,et al.  Comparison of Various Techniques for Calculation of Localization Energies. I. Alternant and Nonalternant Hydrocarbons , 1964 .

[19]  G. E. Kimball,et al.  Quantum Mechanics of the H3 Complex , 1958 .

[20]  H. Eyring THE ENERGY OF ACTIVATION FOR BIMOLECULAR REACTIONS INVOLVING HYDROGEN AND THE HALOGENS, ACCORDING TO THE QUANTUM MECHANICS , 1931 .

[21]  Frederick Albert Matsen IV,et al.  Electron Affinities, Methyl Affinities, and Ionization Energies of Condensed Ring Aromatic Hydrocarbons , 1956 .

[22]  T. L. Hill,et al.  Steric Effects. I. Van der Waals Potential Energy Curves , 1948 .

[23]  H. Zimmerman,et al.  Mechanistic Organic Photochemistry. III. Excited State Solvolyses , 1963 .

[24]  A. Maccoll Reduction Potentials of Conjugated Systems , 1949, Nature.

[25]  A. Weissberger,et al.  Oxidation Processes. XVI.1 The Autoxidation of Ascorbic Acid , 1943 .

[26]  C. Maclean,et al.  Proton magnetic resonance of aromatic carbonium ions , 1958 .

[27]  V. Griffing,et al.  Stability and Reactivity of Molecules from the Standpoint of Molecular Orbitals , 1957 .

[28]  E. Müller,et al.  Substitution und Biradikalbildung. I. Der Einfluß von Methylgruppen im System des p,p′‐Bis‐[diaryl‐methyl]‐diphenyls , 1944 .

[29]  R. Scholl Kolloidchemische und andere Beobachtungen an der Pyranthron-Küpe , 1911 .

[30]  H. Eyring,et al.  The Theory of Trimolecular Reactions1 , 1935 .

[31]  G. Wittig,et al.  Valenztautomerie oder Mesomerie bei ω,ω′‐Tetraphenyl‐polyenen? , 1943 .

[32]  H. Eyring Quantum Mechanics and Chemical Reactions. , 1932 .

[33]  Frederick Albert Matsen IV,et al.  The Relation of the Frequency of Ultraviolet Absorption to the Reduction Potential of Aromatic Hydrocarbons , 1950 .

[34]  H. Eyring STERIC HINDRANCE AND COLLISION DIAMETERS1 , 1932 .

[35]  Henry Eyring,et al.  The Absolute Rate of Homogeneous Atomic Reactions , 1935 .

[36]  H. C. Longuet-Higgins,et al.  The electronic structure of conjugated systems I. General theory , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  R. E. Weston H3 Activated Complex and the Rate of Reaction of Hydrogen Atoms with Hydrogen Molecules , 1959 .

[38]  K. Morokuma,et al.  Localization Energy with Electronic Interaction , 1959 .

[39]  J. Tanaka,et al.  Theoretical Study on the Mechanism of the Aromatic Substitution , 1959 .

[40]  C. Coulson Bond fixation in compounds containing the carbonyl group , 1946 .

[41]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[42]  C. Eckart The Penetration of a Potential Barrier by Electrons , 1930 .

[43]  M. Dewar,et al.  688. Electrophilic substitution. Part III. The nitration of phenanthrene , 1956 .

[44]  H. Zimmerman Mechanistic organic photochemistry , 1963 .

[45]  L. E. Lyons Electron Affinities of Some Aromatic Molecules , 1950, Nature.

[46]  H. L. Jones,et al.  Excited State pK's. Azobenzene and Azoxybenzene , 1964 .

[47]  Frederick Albert Matsen IV,et al.  Antisymmetrized Hückel Orbital Calculations of Ionization Potentials and Electron Affinities of Some Aromatic Hydrocarbons , 1958 .

[48]  L. Goodman,et al.  Charge Distributions in Positive Ions and Ionization Energies of Conjugated Hydrocarbons , 1962 .

[49]  K. Fukui,et al.  Interrelations of Quantum‐Mechanical Quantities Concerning Chemical Reactivity of Conjugated Molecules , 1957 .

[50]  W. P. Weijland,et al.  Reduction potentials of various aromatic hydrocarbons and their univalent anions , 1956 .

[51]  G. W. Wheland A Quantum Mechanical Investigation of the Orientation of Substituents in Aromatic Molecules , 1942 .

[52]  H. C. Longuet-Higgins,et al.  Some Studies in Molecular Orbital Theory II. Ionization Constants in Heteroaromatic Amines and Related Compounds , 1950 .

[53]  E. Lippincott,et al.  Calculation of the Energy of Activation for Some Simple Reactions. I. Ortho‐Para Hydrogen Reaction , 1958 .

[54]  S. Mason 244. Reactivities of aromatic hydrocarbons. Part II. Chlorination , 1959 .