Reduced-Rank Covariance Estimation in Vector Autoregressive Modeling

We consider reduced-rank modeling of the white noise covariance matrix in a large dimensional vector autoregressive (VAR) model. We first propose the reduced-rank covariance estimator under the setting where independent observations are available. We derive the reduced-rank estimator based on a latent variable model for the vector observation and give the analytical form of its maximum likelihood estimate. Simulation results show that the reduced-rank covariance estimator outperforms two competing covariance estimators for estimating large dimensional covariance matrices from independent observations. Then we describe how to integrate the proposed reduced-rank estimator into the fitting of large dimensional VAR models, where we consider two scenarios that require different model fitting procedures. In the VAR modeling context, our reduced-rank covariance estimator not only provides interpretable descriptions of the dependence structure of VAR processes but also leads to improvement in model-fitting and forecasting over unrestricted covariance estimators. Two real data examples are presented to illustrate these fitting procedures.

[1]  Cheol S. Eun,et al.  International Transmission of Stock Market Movements , 1989, Journal of Financial and Quantitative Analysis.

[2]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[3]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[4]  Marco Reale,et al.  Identification of vector AR models with recursive structural errors using conditional independence graphs , 2001 .

[5]  James R. Schott,et al.  Matrix Analysis for Statistics , 2005 .

[6]  Peter D. Hoff,et al.  Bilinear Mixed-Effects Models for Dyadic Data , 2005 .

[7]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[8]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[9]  Ian T. Jolliffe,et al.  Introduction to Multiple Time Series Analysis , 1993 .

[10]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[11]  K. Hoover,et al.  Searching for the Causal Structure of a Vector Autoregression , 2003 .

[12]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[13]  D. Dey,et al.  Estimation of a covariance matrix under Stein's loss , 1985 .

[14]  Jianhua Z. Huang Covariance selection and estimation via penalised normal likelihood , 2005 .

[15]  John R. Freeman,et al.  Vector Autoregression and the Study of Politics , 1989 .

[16]  N. Wermuth,et al.  Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .

[17]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[18]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[19]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[20]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[21]  Richard A. Davis,et al.  Sparse Vector Autoregressive Modeling , 2012, 1207.0520.

[22]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[23]  R. Kass,et al.  Shrinkage Estimators for Covariance Matrices , 2001, Biometrics.

[24]  Alessio Moneta,et al.  Graphical Models for Structural Vector Autoregressions , 2003 .

[25]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[26]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[27]  C. Sims MACROECONOMICS AND REALITY , 1977 .

[28]  Q. Yao,et al.  Modelling multiple time series via common factors , 2008 .

[29]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[30]  Neal S. Holter,et al.  Dynamic modeling of gene expression data. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Helmut Lütkepohl,et al.  Introduction to multiple time series analysis , 1991 .

[32]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[33]  I. Jolliffe Principal Component Analysis , 2002 .