A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition

The Koopman operator is a linear but infinite-dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data-driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Koopman operator. The method requires a data set of snapshot pairs and a dictionary of scalar observables, but does not require explicit governing equations or interaction with a “black box” integrator. We will show that this approach is, in effect, an extension of dynamic mode decomposition (DMD), which has been used to approximate the Koopman eigenvalues and modes. Furthermore, if the data provided to the method are generated by a Markov process instead of a deterministic dynamical system, the algorithm approximates the eigenfunctions of the Kolmogorov backward equation, which could be considered as the “stochastic Koopman operator” (Mezic in Nonlinear Dynamics 41(1–3): 309–325, 2005). Finally, four illustrative examples are presented: two that highlight the quantitative performance of the method when presented with either deterministic or stochastic data and two that show potential applications of the Koopman eigenfunctions.

[1]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[2]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[3]  Ioannis G Kevrekidis,et al.  Variable-free exploration of stochastic models: a gene regulatory network example. , 2006, The Journal of chemical physics.

[4]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[5]  P. Goulart,et al.  Optimal mode decomposition for unsteady flows , 2013, Journal of Fluid Mechanics.

[6]  Ronen Talmon,et al.  Nonlinear intrinsic variables and state reconstruction in multiscale simulations. , 2013, The Journal of chemical physics.

[7]  Gary Froyland,et al.  A Computational Method to Extract Macroscopic Variables and Their Dynamics in Multiscale Systems , 2013, SIAM J. Appl. Dyn. Syst..

[8]  Yoshihiko Susuki,et al.  Nonlinear Koopman modes and power system stability assessment without models , 2014, 2014 IEEE PES General Meeting | Conference & Exposition.

[9]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[10]  I. Mezic,et al.  Nonlinear Koopman Modes and a Precursor to Power System Swing Instabilities , 2012, IEEE Transactions on Power Systems.

[11]  I. Mezic,et al.  Nonlinear Koopman Modes and Coherency Identification of Coupled Swing Dynamics , 2011, IEEE Transactions on Power Systems.

[12]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[13]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[14]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[15]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .

[16]  Uri Shaham,et al.  Dynamic Mode Decomposition , 2013 .

[17]  G. Nicolis,et al.  Spectral signature of the pitchfork bifurcation: Liouville equation approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[19]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[20]  G. Froyland,et al.  Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions of coherent structures in flows , 2009 .

[21]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[22]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[23]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[24]  G. Froyland,et al.  Detection of coherent oceanic structures via transfer operators. , 2007, Physical review letters.

[25]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[26]  O. Junge,et al.  The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems , 2001 .

[27]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[28]  Martin Fischer,et al.  DECOMPOSING BUILDING SYSTEM DATA FOR MODEL VALIDATION AND ANALYSIS USING THE KOOPMAN OPERATOR , 2010 .

[29]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[30]  G. Froyland Statistically optimal almost-invariant sets , 2005 .

[31]  I. Kevrekidis,et al.  Equation-free/Galerkin-free POD-assisted computation of incompressible flows , 2005 .

[32]  J. Juang Applied system identification , 1994 .

[33]  E. Bollt,et al.  The infinitesimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: vector fields and transport barriers from movies. , 2007, Chaos.

[34]  H. Sung,et al.  Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations , 2011 .

[35]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[36]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[37]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[38]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[39]  I. Mezić,et al.  On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. , 2012, Chaos.

[40]  G. Choe Numerical Solution of Stochastic Differential Equations , 2016 .

[41]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[42]  Emanuel Todorov,et al.  Optimal Control Theory , 2006 .

[43]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[45]  P. Gaspard,et al.  Liouvillian dynamics of the Hopf bifurcation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  I. Mezić,et al.  Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics , 2013, 1302.0032.

[47]  Ronald R. Coifman,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[48]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[49]  Holger Wendland,et al.  Meshless Galerkin methods using radial basis functions , 1999, Math. Comput..

[50]  Dan S. Henningson,et al.  Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decomposition , 2012 .

[51]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[52]  Igor Mezi'c,et al.  Geometry of the ergodic quotient reveals coherent structures in flows , 2012, 1204.2050.

[53]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[54]  HansenPer Christian Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank , 1990 .

[55]  B. Matkowsky,et al.  Eigenvalues of the Fokker–Planck Operator and the Approach to Equilibrium for Diffusions in Potential Fields , 1981 .

[56]  Igor Mezic,et al.  A spectral operator-theoretic framework for global stability , 2013, 52nd IEEE Conference on Decision and Control.

[57]  Erik M. Bollt,et al.  Applied and Computational Measurable Dynamics , 2013, Mathematical modeling and computation.

[58]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[59]  S. Bagheri Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum , 2014 .

[60]  Per Christian Hansen,et al.  Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank , 1990, SIAM J. Sci. Comput..

[61]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[62]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[63]  Peter J. Schmid,et al.  Decomposition of time-resolved tomographic PIV , 2012 .