Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt− lymphoid cells

[1]  C. Vonarbourg,et al.  Aryl hydrocarbon receptor , 2012, Gut microbes.

[2]  G. Eberl,et al.  RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota , 2011, Nature Immunology.

[3]  U. Pannicke,et al.  Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. , 2010, Immunity.

[4]  Gérard Eberl,et al.  Lineage Relationship Analysis of RORγt+ Innate Lymphoid Cells , 2010, Science.

[5]  T. Hibi,et al.  Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. , 2010, Gastroenterology.

[6]  A. Hayday,et al.  Epithelial decision makers: in search of the 'epimmunome' , 2010, Nature Immunology.

[7]  M. Caligiuri,et al.  Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. , 2010, Immunity.

[8]  M. Colonna,et al.  Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity , 2010, Proceedings of the National Academy of Sciences.

[9]  D. Topham,et al.  Interleukin-22 (IL-22) Production by Pulmonary Natural Killer Cells and the Potential Role of IL-22 during Primary Influenza Virus Infection , 2010, Journal of Virology.

[10]  J. Kolls Faculty Opinions recommendation of IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. , 2010 .

[11]  A. Sher,et al.  Redundant and Pathogenic Roles for IL-22 in Mycobacterial, Protozoan, and Helminth Infections , 2010, The Journal of Immunology.

[12]  F. Powrie,et al.  Innate lymphoid cells drive IL-23 dependent innate intestinal pathology , 2010, Nature.

[13]  D. Kasper,et al.  Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. , 2010, Cell host & microbe.

[14]  J. D. Di Santo,et al.  IL-7 and IL-15 independently program the differentiation of intestinal CD3−NKp46+ cell subsets from Id2-dependent precursors , 2010, The Journal of experimental medicine.

[15]  A. McKenzie,et al.  Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity , 2010, Nature.

[16]  H. Spits,et al.  Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells , 2010, The Journal of experimental medicine.

[17]  R. Sabat,et al.  Biology of interleukin-22 , 2010, Seminars in Immunopathology.

[18]  Maria T. Abreu,et al.  Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function , 2010, Nature Reviews Immunology.

[19]  R. Flavell,et al.  Regulating human Th17 cells via differential expression of IL-1 receptor. , 2010, Blood.

[20]  Tsutomu Takeuchi,et al.  Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells , 2009, Nature.

[21]  S. Koyasu,et al.  Response to Comment on “Critical Roles of NK and CD8+ T Cells in Central Nervous System Listeriosis” , 2009, The Journal of Immunology.

[22]  M. Caligiuri,et al.  Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH 17 cytokine interleukin-22. , 2009, Blood.

[23]  R. Nurieva,et al.  Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. , 2009, Immunity.

[24]  H. Spits,et al.  Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? , 2009, Nature Reviews Immunology.

[25]  C. Dinarello,et al.  Immunological and inflammatory functions of the interleukin-1 family. , 2009, Annual review of immunology.

[26]  J. Lennerz,et al.  A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity , 2009, Nature.

[27]  C. Tato,et al.  Lymphoid tissue inducer–like cells are an innate source of IL-17 and IL-22 , 2009, The Journal of experimental medicine.

[28]  O. Mandelboim,et al.  Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. , 2008, Immunity.

[29]  A. Murphy,et al.  Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. , 2008, Immunity.

[30]  R. Locksley,et al.  Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells. , 2008, Immunity.

[31]  D. Rifkin,et al.  Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. , 2008, Cell host & microbe.

[32]  J. Buer,et al.  The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins , 2008, Nature.

[33]  S. Sa,et al.  Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens , 2008, Nature Medicine.

[34]  Marc Lecuit Human listeriosis and animal models. , 2007, Microbes and infection.

[35]  J. Gordon,et al.  Functional Genomic Studies of the Intestinal Response to a Foodborne Enteropathogen in a Humanized Gnotobiotic Mouse Model* , 2007, Journal of Biological Chemistry.

[36]  A. Iwasaki Mucosal dendritic cells. , 2007, Annual review of immunology.

[37]  P. Cossart,et al.  Listeria monocytogenes: a multifaceted model , 2006, Nature Reviews Microbiology.

[38]  E. Pamer Immune responses to Listeria monocytogenes , 2004, Nature Reviews Immunology.

[39]  R. Mebius Organogenesis of lymphoid tissues , 2003, Nature Reviews Immunology.

[40]  J. Sims IL-1 and IL-18 receptors, and their extended family. , 2002, Current opinion in immunology.

[41]  P. Cossart,et al.  A Transgenic Model for Listeriosis: Role of Internalin in Crossing the Intestinal Barrier , 2001, Science.

[42]  F. Gonzalez,et al.  The aryl hydrocarbon receptor: studies using the AHR-null mice. , 1998, Drug metabolism and disposition: the biological fate of chemicals.

[43]  M. Domingo,et al.  Penetration of Listeria monocytogenes in mice infected by the oral route. , 1997, Microbial pathogenesis.

[44]  高山 哲朗 Imbalance of NKp44[+]NKp46[-] and NKp44[-]NKp46[+] natural killer cells in the intestinal mucosa of patients with Crohn's disease , 2011 .

[45]  H. Spits,et al.  The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling , 2011, Nature Immunology.

[46]  J. Tschopp,et al.  The Inflammasomes , 2010, Cell.

[47]  茂呂 和世 Innate production of T[H]2 cytokines by adipose tissue-associated c-Kit[+]Sca-1[+] lymphoid cells , 2010 .

[48]  Andreas Diefenbach,et al.  RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells , 2009, Nature Immunology.

[49]  J. Banchereau,et al.  Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin , 2009, Nature Immunology.

[50]  H. Spits,et al.  Human fetal lymphoid tissue–inducer cells are interleukin 17–producing precursors to RORC+ CD127+ natural killer–like cells , 2009, Nature Immunology.

[51]  D. Littman,et al.  Lymphoid tissue inducer cells in intestinal immunity. , 2006, Current topics in microbiology and immunology.

[52]  Yongwon Choi,et al.  An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells , 2004, Nature Immunology.