Organic fluorophores exhibiting highly efficient photoluminescence in the solid state.

There has been extensive research on the development of organic optoelectronic devices, such as organic light-emitting diodes, organic field-effect transistors, and organic solid-state lasers from various viewpoints, ranging from basic studies to practical applications. As organic materials are used as solids in these devices, the importance of organic chromophores that exhibit intense emissions of visible light in the solid state is greatly increasing in the field of organic electronics. However, highly efficient emission from organic solids is very difficult to attain because most organic emitting materials strongly tend to cause concentration quenching of the luminescence in the condensed phase. Therefore, in order to generate and improve organic optoelectronic devices, it is necessary to design novel chromophores that exhibit superior solid-state emission performance. This Focus Review covers the recent development of highly emissive organic small molecules whose photoluminescence quantum yields in the solid state have been reported. Following the introduction, the photophysical processes of excited molecules are briefly reviewed. Subsequently, organic solid fluorophores are described with an emphasis on the characteristics of their molecular structures.

[1]  Yang Liu,et al.  Changing the Behavior of Chromophores from Aggregation‐Caused Quenching to Aggregation‐Induced Emission: Development of Highly Efficient Light Emitters in the Solid State , 2010, Advanced materials.

[2]  B. Tang,et al.  Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. , 2010, Chemical communications.

[3]  Hoi Sing Kwok,et al.  Aggregation-induced emission, self-assembly, and electroluminescence of 4,4'-bis(1,2,2-triphenylvinyl)biphenyl. , 2010, Chemical communications.

[4]  Eunha Kim,et al.  Chemistry as a prism: a review of light-emitting materials having tunable emission wavelengths. , 2009, Chemistry, an Asian journal.

[5]  A. Ajayaghosh,et al.  Anisotropic Self‐Assembly of Photoluminescent Oligo(p‐Phenylenevinylene) Derivatives in Liquid Crystals: An Effective Strategy for the Macroscopic Alignment of π‐Gels , 2009 .

[6]  C. Adachi,et al.  Effect of Molecular Morphology on Amplified Spontaneous Emission of Bis‐Styrylbenzene Derivatives , 2009 .

[7]  Takashi Kato,et al.  Mechanically induced luminescence changes in molecular assemblies. , 2009, Nature chemistry.

[8]  A. Wakamiya,et al.  Highly emissive diborylphenylene-containing bis(phenylethynyl)benzenes: structure-photophysical property correlations and fluoride ion sensing. , 2009, Chemistry.

[9]  Qiang Zhao,et al.  Polyfluorene‐Based Blue‐Emitting Materials , 2009 .

[10]  Ben Zhong Tang,et al.  Structural modulation of solid-state emission of 2,5-bis(trialkylsilylethynyl)-3,4-diphenylsiloles. , 2009, Angewandte Chemie.

[11]  D. Bradley,et al.  Electroluminescence and Laser Emission of Soluble Pure Red Fluorescent Molecular Glasses Based on Dithienylbenzothiadiazole , 2009 .

[12]  Yu Liu,et al.  Thermally Induced Reversible Phase Transformations Accompanied by Emission Switching Between Different Colors of Two Aromatic‐Amine Compounds , 2009 .

[13]  Tung Huei Ke,et al.  Single molecule color controllable light emitting organic field effect transistors for white light emission with high color stability , 2009 .

[14]  E. Nakamura,et al.  Synthesis of benzo[b]siloles via KH-promoted cyclization of (2-alkynylphenyl)silanes. , 2009, Organic letters.

[15]  T. Hiyama,et al.  Synthesis, crystal structure, and photophysical properties of (1E,3E,5E)-1,3,4,6-Tetraarylhexa-1,3,5-trienes: a new class of fluorophores exhibiting aggregation-induced emission. , 2009, Chemistry, an Asian journal.

[16]  Dongho Kim,et al.  Regioselective Ru-catalyzed direct 2,5,8,11-alkylation of perylene bisimides. , 2009, Chemistry.

[17]  B. Tang,et al.  Aggregation-induced emission: phenomenon, mechanism and applications. , 2009, Chemical Communications.

[18]  Wai-Yeung Wong,et al.  Heavy metal organometallic electrophosphors derived from multi-component chromophores , 2009 .

[19]  A. Siove,et al.  Gain measurement and low-threshold laser operation in non-doped thin films made of a small-molecule organic red-emitter , 2009, 0906.5155.

[20]  Deqing Zhang,et al.  Fluorescence enhancement upon gelation and thermally-driven fluorescence switches based on tetraphenylsilole-based organic gelators , 2009 .

[21]  G. U. Kulkarni,et al.  The influence of crystal packing on the solid state fluorescence behavior of alkyloxy substituted phenyleneethynylenes , 2009 .

[22]  Yue Wang,et al.  Hydrogen-bonded dimer stacking induced emission of aminobenzoic acid compounds. , 2009, Chemical communications.

[23]  A. Wakamiya,et al.  Structural Modification of Silicon‐Bridged Ladder Stilbene Oligomers and Distyrylbenzenes , 2009 .

[24]  Wallace W. H. Wong,et al.  Silicon Analogues of Polyfluorene as Materials for Organic Electronics , 2009 .

[25]  T. Hiyama,et al.  Palladium-catalyzed intramolecular coupling of 2-[(2-pyrrolyl)silyl]aryl triflates through 1,2-silicon migration. , 2009, Journal of the American Chemical Society.

[26]  A. Ajayaghosh,et al.  RGB Emission through Controlled Donor Self‐Assembly and Modulation of Excitation Energy Transfer: A Novel Strategy to White‐Light‐Emitting Organogels , 2009 .

[27]  Jong Won Chung,et al.  Shear- and UV-induced fluorescence switching in stilbenic pi-dimer crystals powered by reversible [2 + 2] cycloaddition. , 2009, Journal of the American Chemical Society.

[28]  S. Yamaguchi,et al.  Intense solid-state blue emission with a small Stokes' shift: pi-stacking protection of the diphenylanthracene skeleton. , 2009, Chemical communications.

[29]  Ben Zhong Tang,et al.  Aggregation-induced Emission of Silole Molecules and Polymers: Fundamental and Applications , 2009 .

[30]  T. Hiyama,et al.  1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes: minimal fluorophores exhibiting highly efficient emission in the solid state. , 2009, Angewandte Chemie.

[31]  K. Hirano,et al.  Fluorescent diarylindoles by palladium-catalyzed direct and decarboxylative arylations of carboxyindoles. , 2009, Chemistry.

[32]  S. Barlow,et al.  Substituent effects on the electronic structure of siloles. , 2009, Chemical communications.

[33]  Xuri Huang,et al.  A dependence on the petal number of the static and dynamic first hyperpolarizability for electride molecules: many-petal-shaped Li-doped cyclic polyamines. , 2009, The journal of physical chemistry. A.

[34]  Chen‐Han Chien,et al.  Multifunctional Deep‐Blue Emitter Comprising an Anthracene Core and Terminal Triphenylphosphine Oxide Groups , 2009 .

[35]  Khai Leok Chan,et al.  Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. , 2009, Chemical reviews.

[36]  Ken‐Tsung Wong,et al.  High-luminescence non-doped green OLEDs based on a 9,9-diarylfluorene-terminated 2,1,3-benzothiadiazole derivative , 2009 .

[37]  Donal D. C. Bradley,et al.  Enhanced Solid‐State Luminescence and Low‐Threshold Lasing from Starburst Macromolecular Materials , 2009 .

[38]  Sei‐Yong Kim,et al.  Thickness dependence of PL efficiency of organic thin films , 2009 .

[39]  T. Hiyama,et al.  Modular approach to silicon-bridged biaryls: palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates. , 2008, Angewandte Chemie.

[40]  T. Mutai,et al.  Switching of polymorph-dependent ESIPT luminescence of an imidazo[1,2-a]pyridine derivative. , 2008, Angewandte Chemie.

[41]  J. Roncali,et al.  A Dithienylbenzothiadiazole Pure Red Molecular Emitter with Electron Transport and Exciton Self‐Confinement for Nondoped Organic Red‐Light‐Emitting Diodes , 2008 .

[42]  A. Ajayaghosh,et al.  Self-assembly of oligo(para-phenylenevinylene)s through arene-perfluoroarene interactions: pi gels with longitudinally controlled fiber growth and supramolecular exciplex-mediated enhanced emission. , 2008, Chemistry.

[43]  Toshiyuki Watanabe,et al.  Reversible Fluorescent On–Off Recording in a Highly Transparent Polymeric Material Utilizing Fluorescent Resonance Energy Transfer (FRET) Induced by Heat Treatment , 2008 .

[44]  Olivier Sandre,et al.  Multicolor Emission of Small Molecule-Based Amorphous Thin Films and Nanoparticles with a Single Excitation Wavelength , 2008 .

[45]  S. T. Lee,et al.  Approaches for achieving highly efficient exciplex-based organic light-emitting devices , 2008 .

[46]  T. Hiyama,et al.  Silicon-bridge effects on photophysical properties of silafluorenes. , 2008, Chemistry, an Asian journal.

[47]  Yukio Hinatsu,et al.  Reversible mechanochromic luminescence of [(C6F5Au)2(mu-1,4-diisocyanobenzene)]. , 2008, Journal of the American Chemical Society.

[48]  Victoria L McGuffin,et al.  Luminescence-based methods for sensing and detection of explosives , 2008, Analytical and bioanalytical chemistry.

[49]  Takashi Kato,et al.  Stimuli-responsive luminescent liquid crystals: change of photoluminescent colors triggered by a shear-induced phase transition. , 2008, Angewandte Chemie.

[50]  A. Ajayaghosh,et al.  Detection of zinc ions under aqueous conditions using chirality assisted solid-state fluorescence of a bipyridyl based fluorophore. , 2008, Chemical communications.

[51]  Jong Won Chung,et al.  Highly fluorescent supramolecular gels with chirality transcription through hydrogen bonding. , 2008, Chemical Communications.

[52]  Y. Yamaguchi,et al.  Photophysical properties of oligophenylene ethynylenes modified by donor and/or acceptor groups. , 2008, The journal of physical chemistry. A.

[53]  Se Hun Kim,et al.  Tetraphenylimidazole‐Based Excited‐State Intramolecular Proton‐Transfer Molecules for Highly Efficient Blue Electroluminescence , 2008 .

[54]  C. Weder,et al.  Shape memory polymers with built-in threshold temperature sensors , 2008 .

[55]  X. Tao,et al.  Aggregation-Induced Emissions of Fluorenonearylamine Derivatives : A New Kind of Materials for Nondoped Red Organic Light-Emitting Diodes , 2008 .

[56]  Fuyou Li,et al.  Aggregation-induced phosphorescent emission (AIPE) of iridium(III) complexes. , 2008, Chemical communications.

[57]  Yi‐Ting Lee,et al.  Solid-state highly fluorescent diphenylaminospirobifluorenylfumaronitrile red emitters for non-doped organic light-emitting diodes. , 2008, Chemical communications.

[58]  Christoph Weder,et al.  Oligo(p‐phenylene vinylene)s as a “New” Class of Piezochromic Fluorophores , 2008 .

[59]  Jiann T. Lin,et al.  Benzimidazole/amine-based compounds capable of ambipolar transport for application in single-layer blue-emitting OLEDs and as hosts for phosphorescent emitters. , 2008, Angewandte Chemie.

[60]  Shixiong Qian,et al.  Aggregation‐induced Emission (AIE)‐active Starburst Triarylamine Fluorophores as Potential Non‐doped Red Emitters for Organic Light‐emitting Diodes and Cl2 Gas Chemodosimeter , 2007 .

[61]  F. Cicoira,et al.  Organic Light Emitting Field Effect Transistors: Advances and Perspectives , 2007 .

[62]  Adela C. Bonoiu,et al.  Aggregation‐Enhanced Fluorescence in Organically Modified Silica Nanoparticles: A Novel Approach toward High‐Signal‐Output Nanoprobes for Two‐Photon Fluorescence Bioimaging , 2007 .

[63]  Gregor Schwartz,et al.  Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light‐Emitting Diodes , 2007 .

[64]  Yuguang Ma,et al.  Crystal Structure of a Highly Luminescent Slice Crystal Grown in the Vapor Phase: A New Polymorph of 2,5-Diphenyl-1,4-distyrylbenzene , 2007 .

[65]  Hartmut Yersin,et al.  Highly efficient OLEDs with phosphorescent materials , 2007 .

[66]  Yong Cao,et al.  Silole‐Containing Polymers: Chemistry and Optoelectronic Properties , 2007 .

[67]  R. Al‐Kaysi,et al.  Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements. , 2007, The Review of scientific instruments.

[68]  Yongqiang Dong,et al.  Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes , 2007 .

[69]  I. Samuel,et al.  The Development of Light‐Emitting Dendrimers for Displays , 2007 .

[70]  K. Mori,et al.  3-boryl-2,2'-bithiophene as a versatile core skeleton for full-color highly emissive organic solids. , 2007, Angewandte Chemie.

[71]  Mercedes Crego-Calama,et al.  Design of fluorescent materials for chemical sensing. , 2007, Chemical Society reviews.

[72]  Qian Wang,et al.  Aggregation-induced emission enhancement of 2-(2'-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. , 2007, The journal of physical chemistry. B.

[73]  Jianjun Li,et al.  Monodisperse Starburst Oligofluorene‐Functionalized 4,4′,4″‐Tris(carbazol‐9‐yl)‐triphenylamines: Their Synthesis and Deep‐Blue Fluorescent Properties for Organic Light‐Emitting Diode Applications , 2007 .

[74]  Markus Schwoerer,et al.  Organic Molecular Solids , 2007 .

[75]  S. W. Thomas,et al.  Chemical sensors based on amplifying fluorescent conjugated polymers. , 2007, Chemical reviews.

[76]  G A Turnbull,et al.  Organic semiconductor lasers. , 2007, Chemical reviews.

[77]  Josef Salbeck,et al.  Spiro compounds for organic optoelectronics. , 2007, Chemical reviews.

[78]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[79]  V. K. Praveen,et al.  Quadrupolar π‐Gels: Sol–Gel Tunable Red–Green–Blue Emission in Donor–Acceptor‐Type Oligo(p‐phenylenevinylene)s , 2007 .

[80]  Yun Chi,et al.  Phosphorescent dyes for organic light-emitting diodes. , 2007, Chemistry.

[81]  P. Prasad,et al.  Aggregation‐Enhanced Fluorescence and Two‐Photon Absorption in Nanoaggregates of a 9,10‐Bis[4′‐(4″‐aminostyryl)styryl]anthracene Derivative , 2006 .

[82]  A. Wakamiya,et al.  Highly emissive organic solids containing 2,5-diboryl-1,4-phenylene unit. , 2006, Journal of the American Chemical Society.

[83]  Yongqiang Dong,et al.  Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. , 2006, Chemical communications.

[84]  P. Douglas,et al.  Coordination complexes exhibiting room-temperature phosphorescence: Evaluation of their suitability as triplet emitters in organic light emitting diodes , 2006 .

[85]  André Moliton,et al.  How to model the behaviour of organic photovoltaic cells , 2006 .

[86]  E. W. Meijer,et al.  Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures. , 2006, The journal of physical chemistry. B.

[87]  Julius Rebek,et al.  Fluorescent sensors for organophosphorus nerve agent mimics. , 2006, Journal of the American Chemical Society.

[88]  Monica Katiyar,et al.  Various approaches to white organic light emitting diodes and their recent advancements , 2006 .

[89]  James E. Martin,et al.  Measuring the absolute quantum efficiency of luminescent materials , 2005 .

[90]  Ken‐Tsung Wong,et al.  Spiro-configured bifluorenes: highly efficient emitter for UV organic light-emitting device and host material for red electrophosphorescence. , 2005, Organic letters.

[91]  F. Wudl,et al.  Light‐Emitting Polythiophenes , 2005, Advanced Materials.

[92]  G. Cheng,et al.  Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid-state luminescence efficiency. , 2005, Journal of the American Chemical Society.

[93]  John F. Callan,et al.  Luminescent sensors and switches in the early 21st century , 2005 .

[94]  Otto S. Wolfbeis,et al.  Materials for fluorescence-based optical chemical sensors , 2005 .

[95]  Sang Ho Lee,et al.  Highly fluorescent solid-state asymmetric spirosilabifluorene derivatives. , 2005, Journal of the American Chemical Society.

[96]  Y.‐T. Lin,et al.  Highly Efficient UV Organic Light‐Emitting Devices Based on Bi(9,9‐diarylfluorene)s , 2005 .

[97]  Daoben Zhu,et al.  Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. , 2005, Journal of the American Chemical Society.

[98]  J. Yoshida,et al.  Triarylethene-based extended pi-systems: programmable synthesis and photophysical properties. , 2005, The Journal of organic chemistry.

[99]  C.‐T. Chen,et al.  Red‐Emitting Fluorenes as Efficient Emitting Hosts for Non‐Doped, Organic Red‐Light‐Emitting Diodes , 2005 .

[100]  Chihaya Adachi,et al.  Simple Accurate System for Measuring Absolute Photoluminescence Quantum Efficiency in Organic Solid-State Thin Films , 2004 .

[101]  André Moliton,et al.  Review of electronic and optical properties of semiconducting π‐conjugated polymers: applications in optoelectronics , 2004 .

[102]  Stephen R. Forrest,et al.  White Organic Light‐Emitting Devices for Solid‐State Lighting , 2004 .

[103]  G. Turnbull,et al.  Polymer lasers: recent advances , 2004 .

[104]  T. B. Marder,et al.  Applications of Three-Coordinate Organoboron Compounds and Polymers in Optoelectronics , 2004 .

[105]  Chin‐Ti Chen,et al.  Evolution of Red Organic Light-Emitting Diodes: Materials and Devices , 2004 .

[106]  C.‐c. Wu,et al.  Efficient Organic Blue‐Light‐Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties , 2004 .

[107]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[108]  Chin‐Ti Chen,et al.  Readily synthesised arylamino fumaronitrile for non-doped red organic light-emitting diodes. , 2003, Chemical communications.

[109]  Zakya H. Kafafi,et al.  High efficiency molecular organic light-emitting diodes based on silole derivatives and their exciplexes , 2003 .

[110]  J. Ferraris,et al.  Structual and optical studies of distyrylbenzene single crystals , 2003 .

[111]  Zakya H. Kafafi,et al.  Highly efficient molecular organic light-emitting diodes based on exciplex emission , 2003 .

[112]  T. Swager,et al.  Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors. , 2003, Journal of the American Chemical Society.

[113]  M. Cölle,et al.  Preparation and Characterization of Blue‐Luminescent Tris(8‐hydroxyquinoline)‐aluminum (Alq3) , 2003 .

[114]  C.-H. Chen,et al.  Recent progress of molecular organic electroluminescent materials and devices , 2002 .

[115]  Sang-Don Jung,et al.  Enhanced emission and its switching in fluorescent organic nanoparticles. , 2002, Journal of the American Chemical Society.

[116]  J. Salbeck,et al.  Optical amplification in spiro-type molecular glasses , 2002 .

[117]  Y. Chien,et al.  Ter(9,9-diarylfluorene)s: highly efficient blue emitter with promising electrochemical and thermal stability. , 2002, Journal of the American Chemical Society.

[118]  Andrew P. Monkman,et al.  Measurements of Solid‐State Photoluminescence Quantum Yields of Films Using a Fluorimeter , 2002 .

[119]  Junji Kido,et al.  Organo lanthanide metal complexes for electroluminescent materials. , 2002, Chemical reviews.

[120]  J. Fréchet,et al.  Convergent dendrons and dendrimers: from synthesis to applications. , 2001, Chemical reviews.

[121]  Dieter Neher,et al.  Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence , 2001 .

[122]  J S Brooks,et al.  Functionalized pentacene: improved electronic properties from control of solid-state order. , 2001, Journal of the American Chemical Society.

[123]  Uli Lemmer,et al.  Conjugated polymers: lasing and stimulated emission , 2001 .

[124]  Jean M. J. Fréchet,et al.  Light-harvesting dendrimers , 2000 .

[125]  R. Cingolani,et al.  Tuning Solid-State Photoluminescence Frequencies and Efficiencies of Oligomers Containing One Central Thiophene-S,S-dioxide Unit , 2000 .

[126]  Alan J. Heeger,et al.  Semiconducting (Conjugated) Polymers as Materials for Solid‐State Lasers , 2000 .

[127]  Tetsuya Noda,et al.  A Novel Class of Emitting Amorphous Molecular Materials as Bipolar Radical Formants: 2-{4-[Bis(4-methylphenyl)amino]phenyl}- 5-(dimesitylboryl)thiophene and 2-{4-[Bis(9,9-dimethylfluorenyl)amino]phenyl}- 5-(dimesitylboryl)thiophene , 2000 .

[128]  G. Kranzelbinder,et al.  Organic solid-state lasers , 2000 .

[129]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals and Polymers , 1999 .

[130]  Stephen R. Forrest,et al.  Phosphorescent materials for application to organic light emitting devices , 1999 .

[131]  G. Gigli,et al.  Modified Oligothiophenes with High Photo- and Electroluminescence Efficiencies , 1999 .

[132]  Charles D. Merritt,et al.  Photoluminescence quantum yield of pure and molecularly doped organic solid films , 1999 .

[133]  Stephen R. Forrest,et al.  Lasing action in organic semiconductor thin films , 1999 .

[134]  F. Vögtle,et al.  Dendrimers: From Design to Application-A Progress Report. , 1999, Angewandte Chemie.

[135]  F. Vögtle,et al.  Dendrimere: vom Design zur Anwendung – ein Fortschrittsbericht , 1999 .

[136]  Nir Tessler,et al.  Lasers Based on Semiconducting Organic Materials , 1999 .

[137]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[138]  T. Swager,et al.  Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects , 1998 .

[139]  A. Epstein,et al.  EXCIPLEX EMISSION FROM BILAYERS OF POLY(VINYL CARBAZOLE) AND PYRIDINE BASED CONJUGATED COPOLYMERS , 1998 .

[140]  William R. Salaneck,et al.  Solid‐State Amplified Spontaneous Emission in Some Spiro‐Type Molecules: A New Concept for the Design of Solid‐State Lasing Molecules , 1998 .

[141]  H. Chow,et al.  The synthesis and properties of novel functional dendritic molecules , 1998 .

[142]  Y. Shirota,et al.  Exciplex formation at the organic solid-state interface: Yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato)aluminum and hole-transporting molecular materials with low ionization potentials , 1998 .

[143]  T. Swager,et al.  Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials , 1998 .

[144]  Arno Kraft,et al.  Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. , 1998, Angewandte Chemie.

[145]  Andrew C. Grimsdale,et al.  Elektrolumineszierende konjugierte Polymere – Polymere erstrahlen in neuem Licht , 1998 .

[146]  E. Chandross,et al.  Organic Solid-State Lasers: Past and Future , 1997, Science.

[147]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[148]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[149]  Ifor D. W. Samuel,et al.  Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers , 1995 .

[150]  Jeffrey H. Williams,et al.  The molecular electric quadrupole moment and solid-state architecture , 1993 .

[151]  A. Fitch,et al.  Structure of the Lowest Temperature Phase of the Solid Benzene–Hexafluorobenzene Adduct† , 1992 .

[152]  J. H. Williams,et al.  Die Struktur der Tiefsttemperaturphase des festen Benzol‐Hexafluorbenzol‐Addukts , 1992 .

[153]  N. Turro Modern Molecular Photochemistry , 1978 .

[154]  J. Demas,et al.  Measurement of photoluminescence quantum yields. Review , 1971 .

[155]  C. R. Patrick,et al.  A Molecular Complex of Benzene and Hexafluorobenzene , 1960, Nature.

[156]  Wallace W. H. Wong,et al.  Poly(dibenzosilole)s , 2008 .

[157]  Knut Rurack,et al.  Fluorescence Quantum Yields: Methods of Determination and Standards , 2008 .

[158]  J. Salbeck,et al.  Spiro Compounds for Organic Electroluminescence and Related Applications , 2006 .

[159]  H. Shim,et al.  Light-Emitting Characteristics of Conjugated Polymers , 2002 .

[160]  H S Kwok,et al.  Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. , 2001, Chemical communications.

[161]  Ullrich Mitschke,et al.  The electroluminescence of organic materials , 2000 .

[162]  K. Tamao,et al.  Silole-containing σ- and π-conjugated compounds , 1998 .