Aging in 18650-type Li-ion cells examined with neutron diffraction, electrochemical analysis and physico-chemical modeling

[1]  M. Hofmann,et al.  Effect of fatigue/ageing on the lithium distribution in cylinder-type Li-ion batteries , 2017 .

[2]  H. Gasteiger,et al.  Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction , 2017 .

[3]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction , 2017 .

[4]  Y. Ukyo,et al.  Degradation analysis of 18650-type lithium-ion cells by operando neutron diffraction , 2016 .

[5]  Phl Peter Notten,et al.  Degradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Cycling-induced Aging , 2016 .

[6]  Dirk Uwe Sauer,et al.  Modeling mechanical degradation in lithium ion batteries during cycling: Solid electrolyte interphase fracture , 2015 .

[7]  K. Jalkanen,et al.  Cycle aging of commercial NMC/graphite pouch cells at different temperatures , 2015 .

[8]  O. Dolotko,et al.  SPODI: High resolution powder diffractometer , 2015 .

[9]  Phl Peter Notten,et al.  In situ methods for Li-ion battery research : a review of recent developments , 2015 .

[10]  M. Hofmann,et al.  Homogeneity of lithium distribution in cylinder-type Li-ion batteries , 2015, Scientific Reports.

[11]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[12]  Song-Yul Choe,et al.  Development of a physics-based degradation model for lithium ion polymer batteries considering side reactions , 2015 .

[13]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction , 2014 .

[14]  Phl Peter Notten,et al.  Electron tunneling based SEI formation model , 2014 .

[15]  Chih-Wei Hu,et al.  Structural evolution in LiFePO4-based battery materials: in-situ and ex-situ time-of-flight neutron diffraction study , 2014 .

[16]  Helmut Ehrenberg,et al.  Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction , 2014 .

[17]  W. Bessler,et al.  Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior , 2014 .

[18]  D. Sauer,et al.  Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries , 2014 .

[19]  Neeraj Sharma,et al.  Real-time investigation of the structural evolution of electrodes in a commercial lithium-ion battery containing a V-added LiFePO4 cathode using in-situ neutron powder diffraction , 2013 .

[20]  Stephen J. Harris,et al.  In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction , 2013 .

[21]  Neeraj Sharma,et al.  Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction , 2013 .

[22]  J. Fergus,et al.  Lithium Ion Battery Anode Aging Mechanisms , 2013, Materials.

[23]  Wei Zhang,et al.  Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction , 2012, Scientific Reports.

[24]  Gregory L. Plett,et al.  Controls oriented reduced order modeling of solid-electrolyte interphase layer growth , 2012 .

[25]  C. Delacourt,et al.  Calendar aging of a graphite/LiFePO4 cell , 2012 .

[26]  Thilo Pirling,et al.  “In-operando” neutron scattering studies on Li-ion batteries , 2012 .

[27]  M. Hoelzel,et al.  High-resolution neutron powder diffractometer SPODI at research reactor FRM II , 2012 .

[28]  Xuyong Feng,et al.  Improvement of electrochemical properties of layered LiNi1/3Co1/3Mn1/3O2 positive electrode material by zirconium doping , 2011 .

[29]  Mohammadhosein Safari,et al.  Modeling of a Commercial Graphite/LiFePO4 Cell , 2011 .

[30]  M. Dubarry,et al.  Identifying battery aging mechanisms in large format Li ion cells , 2011 .

[31]  Neeraj Sharma,et al.  Structural changes in a commercial lithium-ion battery during electrochemical cycling: An in situ neutron diffraction study , 2010 .

[32]  Mark F. Mathias,et al.  Electrochemistry and the Future of the Automobile , 2010 .

[33]  Robert Kostecki,et al.  Surface structural disordering in graphite upon lithium intercalation/deintercalation , 2010, 1108.0846.

[34]  Mark Hilary Van Benthem,et al.  In situ analysis of LiFePO4 batteries: Signal extraction by multivariate analysis , 2010, Powder Diffraction.

[35]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[36]  M. Safari,et al.  Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries , 2009 .

[37]  Jong-Won Lee,et al.  Simulation of capacity loss in carbon electrode for lithium-ion cells during storage , 2007 .

[38]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[39]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[40]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[41]  John Newman,et al.  Cyclable Lithium and Capacity Loss in Li-Ion Cells , 2005 .

[42]  Gan Ning,et al.  Cycle Life Modeling of Lithium-Ion Batteries , 2004 .

[43]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[44]  Mark A. Rodriguez,et al.  Simultaneous in situ-neutron diffraction studies of the anode and cathode in a lithium-ion cell , 2003 .

[45]  R. Gilles,et al.  Status of the new structure powder diffractometer (SPODI) at the FRM-II in Garching , 2002 .

[46]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[47]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[48]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[49]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[50]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[51]  Dahn,et al.  Suppression of staging in lithium-intercalated carbon by disorder in the host. , 1990, Physical review. B, Condensed matter.

[52]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[53]  Andreas Jossen,et al.  A SEI Modeling Approach Distinguishing between Capacity and Power Fade , 2017 .

[54]  Mohammadhosein Safari,et al.  Mathematical Modeling of Aging of Li-Ion Batteries , 2016 .

[55]  M. Lacroix,et al.  An Inverse Method for Estimating the Electrochemical Parameters of Lithium-Ion Batteries I. Methodology , 2016 .

[56]  Göran Lindbergh,et al.  A Model for Predicting Capacity Fade due to SEI Formation in a Commercial Graphite/LiFePO4 Cell , 2015 .

[57]  Phl Peter Notten,et al.  Modeling the SEI-Formation on Graphite Electrodes in LiFePO4 Batteries , 2015 .

[58]  Andreas Jossen,et al.  Simulation and Measurement of Local Potentials of Modified Commercial Cylindrical Cells: II: Multi-Dimensional Modeling and Validation , 2015 .

[59]  H. Gasteiger,et al.  Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance , 2015 .

[60]  Thilo Pirling,et al.  Spatially resolved in operando neutron scattering studies on Li-ion batteries , 2014 .

[61]  S. Pischinger,et al.  Pseudo 3D Modeling and Analysis of the SEI Growth Distribution in Large Format Li-Ion Polymer Pouch Cells , 2013 .

[62]  Anna G. Stefanopoulou,et al.  Expansion of Lithium Ion Pouch Cell Batteries: Observations from Neutron Imaging , 2013 .

[63]  Martin Mühlbauer,et al.  Fatigue Process in Li-Ion Cells: An In Situ Combined Neutron Diffraction and Electrochemical Study , 2012 .

[64]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .