Delocalizations in sigma-radical cations: the intriguing structures of ionized [n]rotanes.

Highly symmetric aliphatic hydrocarbons such as D(4h)-[4]rotane do not necessarily have degenerate HOMOs. According to our predictions based on high-level computations, its radical cation should display a highly delocalized D(4h)-symmetric structure, in contrast to its Jahn-Teller distorted cousin, the radical cation of [3]rotane, which exists in two distonic localized forms with C(2v) and C(s) symmetry.

[1]  A. A. Fokin,et al.  Selective alkane transformations via radicals and radical cations: insights into the activation step from experiment and theory. , 2002, Chemical reviews.

[2]  P. Schleyer,et al.  Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. , 2001, Organic letters.

[3]  P. Schreiner,et al.  The rearrangement of the cubane radical cation in solution. , 2001, Chemistry.

[4]  I. Bersuker,et al.  Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. , 2001, Chemical reviews.

[5]  A. Marcinek,et al.  Isomerization of Cubane Radical Cation , 2000 .

[6]  Sastry,et al.  The radical cation of syn-tricyclooctadiene and its rearrangement products , 2000, Chemistry.

[7]  John F. Stanton,et al.  A simple scheme for the direct calculation of ionization potentials with coupled-cluster theory that exploits established excitation energy methods , 1999 .

[8]  Olaf Wiest,et al.  Structure and [2+2] Cycloreversion of the Cyclobutane Radical Cation , 1999 .

[9]  T. Bally,et al.  The C4H6•+ Potential Energy Surface. 1. The Ring-Opening Reaction of Cyclobutene Radical Cation and Related Rearrangements , 1998 .

[10]  T. Herbertz,et al.  Electron transfer photochemistry of bifunctional strained-ring and unsaturated systems , 1997 .

[11]  Horst M. Sulzbach,et al.  THE STRANGE CASE OF THE ETHANE RADICAL CATION , 1997 .

[12]  Timothy Clark,et al.  THE QUADRICYCLANE TO NORBORNADIENE RADICAL CATION REARRANGEMENT : AN AB INITIO AND DENSITY FUNCTIONAL STUDY , 1997 .

[13]  H. Prinzbach,et al.  (Iso)Pagodane Radical Cations in Liquid Hydrocarbons: “Time-Resolved Fluorescence-Detected Magnetic Resonance” Study of Valence Isomeric Radical Cations† , 1996 .

[14]  S. Shaik,et al.  Comparative Study of Ethane and Propane Cation Radicals by B3LYP Density Functional and High-Level ab Initio Methods , 1996 .

[15]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[16]  T. Bally,et al.  THE C8H8 RADICAL CATIONS OF CYCLOOCTATETRAENE, SEMIBULLVALENE, AND THEIR COMMON BISALLYLIC REARRANGEMENT PRODUCT : ELECTRONIC STRUCTURE AND POTENTIAL ENERGY SURFACES , 1995 .

[17]  A. Meijere,et al.  [3]rotane : crystal structure, X-X difference electron density, and phase transition , 1991 .

[18]  P. Eaton,et al.  Cubane radical cation in liquid hydrocarbons: Time-resolved fluorescence detected magnetic resonance study , 1991 .

[19]  D. Hrovat,et al.  Ab initio calculations on the ring opening of cyclopropane radical cation. Trimethylene radical cation is not a stable intermediate , 1988 .

[20]  J. Heinze,et al.  One‐ and Two‐Electron Oxidations of Pagodanes and Bissecododecahedradienes: Unusually Persistent Radical Cations , 1987 .

[21]  K. Rasmussen,et al.  Consistent force field calculation of conformations of spiro compounds , 1985 .

[22]  S. J. Cyvin,et al.  The molecular structure of [4]-rotane , 1984 .

[23]  R. Gleiter,et al.  Interaction of walsh orbitals in rotanes. Photoelectron spectroscopic investigation , 1979 .

[24]  T. Prangé,et al.  ‘Paddle-wheel’ hydrocarbons. Intracyclic C–C bond length shortening in rotanes. X-Ray crystal structures of [3]- and [4]-rotane , 1979 .

[25]  E. Haselbach,et al.  Tetrakis (methylidene)cyclobutane (‘[4]Radialene’): Electronic states of the molecular ion , 1978 .

[26]  G. Griffin,et al.  Polyexomethylene Small-Ring Hydrocarbons: Tetramethylenecyclobutane and Dihydrotetramethylenecyclobutane , 1963 .