Partially Symmetric Variants of Comon's Problem Via Simultaneous Rank

A symmetric tensor may be regarded as a partially symmetric tensor in several different ways. These produce different notions of rank for the symmetric tensor which are related by chains of inequalities. We show how the study of the simultaneous symmetric rank of partial derivatives of the homogeneous polynomial associated to the symmetric tensor can be used to prove equalities among different partially symmetric ranks. We apply this to the special cases of binary forms, ternary and quaternary cubics, monomials, and elementary symmetric polynomials.

[1]  Anna Seigal,et al.  Ranks and symmetric ranks of cubic surfaces , 2018, J. Symb. Comput..

[2]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[3]  Hwangrae Lee,et al.  Power Sum Decompositions of Elementary Symmetric Polynomials , 2015, 1508.05235.

[4]  Shmuel Friedland,et al.  Remarks on the Symmetric Rank of Symmetric Tensors , 2015, SIAM J. Matrix Anal. Appl..

[5]  Shmuel Friedland,et al.  On tensors of border rank l in Cm×n×l , 2013 .

[6]  Pierre Comon,et al.  General tensor decomposition, moment matrices and applications , 2013, J. Symb. Comput..

[7]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[8]  Emanuele Ventura Real rank boundaries and loci of forms , 2017, 1708.03078.

[9]  Kristian Ranestad,et al.  On the rank of a symmetric form , 2011, 1104.3648.

[10]  Zach Teitler,et al.  Geometric lower bounds for generalized ranks , 2014, ArXiv.

[11]  L. Chiantini,et al.  Symmetric tensors: rank, Strassen's conjecture and e-computability , 2015, 1506.03176.

[12]  Anthony Iarrobino,et al.  Inverse System of a Symbolic Power II. The Waring Problem for Forms , 1995 .

[13]  Yaroslav Shitov,et al.  A Counterexample to Comon's Conjecture , 2017, SIAM J. Appl. Algebra Geom..

[14]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[15]  Ris Ris Varieties of apolar subschemes of toric surfaces , 1970 .

[16]  Jessica Sidman,et al.  Multigraded Regularity: Syzygies and Fat Points , 2006 .

[17]  Zach Teitler,et al.  Waring Decompositions of Monomials , 2012, 1201.2922.

[18]  J. Landsberg,et al.  Ranks of tensors and a generalization of secant varieties , 2009, 0909.4262.

[19]  P. Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.

[20]  Enrico Carlini,et al.  Waring loci and the Strassen conjecture , 2016, 1605.00384.

[21]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .

[22]  Emanuele Ventura,et al.  A note on the simultaneous Waring rank of monomials , 2017, 1711.00089.

[23]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[24]  Claudio Fontanari,et al.  On Waring's problem for many forms and Grassmann defective varieties , 2002 .

[25]  E. Ballico,et al.  Tensor ranks on tangent developable of Segre varieties , 2012, 1210.7976.

[26]  Maciej Gałązka,et al.  Multigraded apolarity , 2016, Mathematische Nachrichten.

[27]  Zheng-Hai Huang,et al.  Comon's Conjecture, Rank Decomposition, and Symmetric Rank Decomposition of Symmetric Tensors , 2016, SIAM J. Matrix Anal. Appl..

[28]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[29]  J. M. Landsberg,et al.  On the Ranks and Border Ranks of Symmetric Tensors , 2009, Found. Comput. Math..

[30]  E. Lasker Zur Theorie der kanonischen Formen , 1904 .

[31]  Maciej Gałązka,et al.  Vector bundles give equations of cactus varieties , 2016 .

[32]  Kristian Ranestad,et al.  On the cactus rank of cubic forms , 2011, J. Symb. Comput..

[33]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.

[34]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[35]  Kristian Ranestad,et al.  On polynomials with given Hilbert function and applications , 2012, 1211.7306.

[36]  J. M. Landsberg,et al.  Determinantal equations for secant varieties and the Eisenbud–Koh–Stillman conjecture , 2010, J. Lond. Math. Soc..

[37]  Gian-Carlo Rota,et al.  Apolarity and Canonical Forms for Homogeneous Polynomials , 1993, Eur. J. Comb..

[38]  Luke Oeding,et al.  Report on "Geometry and representation theory of tensors for computer science, statistics and other areas." , 2008, 0810.3940.

[39]  Giorgio Ottaviani,et al.  On the number of Waring decompositions for a generic polynomial vector , 2016, 1601.01869.

[40]  J. Landsberg,et al.  Equations for secant varieties of Veronese and other varieties , 2011, 1111.4567.

[41]  Anthony V. Geramita,et al.  The Curves Seminar at Queen's , 1981 .

[42]  Alessandro Terracini,et al.  Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari , 1915 .

[43]  W. Buczyska,et al.  Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes , 2013 .

[44]  Yi Lin Tensor product space ANOVA models , 2000 .

[45]  Enrico Carlini,et al.  The solution to the Waring problem for monomials and the sum of coprime monomials , 2012 .

[46]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[47]  E. Allman,et al.  Phylogenetic invariants for the general Markov model of sequence mutation. , 2003, Mathematical biosciences.

[48]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[49]  Joe Harris,et al.  The Geometry Of Schemes , 1992 .

[50]  V. Kanev,et al.  Polar Covariants of Plane Cubics and Quartics , 1993 .