Evolving Effective Incremental Solvers for SAT with a Hyper-Heuristic Framework Based on Genetic Programming

Hyper-heuristics could simply be defined as heuristics to choose other heuristics. In other words, they are methods for combining existing heuristics to generate new ones. In this paper, we use a grammar-based genetic programming hyperheuristic framework. The framework is used for evolving effective incremental solvers for SAT. The evolved heuristics perform very well against well-known local search heuristics on a variety of benchmark SAT problems.

[1]  Graham Kendall,et al.  An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  Riccardo Poli,et al.  Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework , 2007, Artificial Evolution.

[3]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[4]  Elena Marchiori,et al.  Evolutionary Algorithms for the Satisfiability Problem , 2002, Evolutionary Computation.

[5]  Toby Walsh,et al.  Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.

[6]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[7]  Andrew W. Moore,et al.  Learning Evaluation Functions to Improve Optimization by Local Search , 2001, J. Mach. Learn. Res..

[8]  Graham Kendall,et al.  Evolving Bin Packing Heuristics with Genetic Programming , 2006, PPSN.

[9]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[10]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[11]  Alex S. Fukunaga,et al.  Automated discovery of composite SAT variable-selection heuristics , 2002, AAAI/IAAI.

[12]  Edmund K. Burke,et al.  An ant algorithm hyperheuristic for the project presentation scheduling problem , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Alex S. Fukunaga,et al.  Evolving Local Search Heuristics for SAT Using Genetic Programming , 2004, GECCO.

[14]  Hussein A. Abbass,et al.  MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[15]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[16]  Elena Marchiori,et al.  An adaptive evolutionary algorithm for the satisfiability problem , 2000, SAC '00.

[17]  Thomas Stützle,et al.  Local Search Algorithms for SAT: An Empirical Evaluation , 2000, Journal of Automated Reasoning.

[18]  Elena Marchiori,et al.  A flipping genetic algorithm for hard 3-SAT problems , 1999 .

[19]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.