Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia

Gabriëlle H S Buitendijk | David M. Evans | A. Hofman | A. Uitterlinden | T. Spector | T. Lehtimäki | A. Paterson | R. Klein | N. Timpson | Y. Teo | C. Klaver | P. Mitchell | Liang Xu | J. Jonas | T. Wong | E. Tai | O. Raitakari | F. Rivadeneira | C. Duijn | T. Meitinger | A. Metspalu | G. Montgomery | T. Haller | E. Chew | A. Döring | Yingfeng Zheng | I. Rudan | L. Karssen | Jie-Jin Wang | B. Klein | D. Mackey | A. Wright | B. Oostra | J. Kemp | N. Amin | C. Hayward | George Mcmahon | O. Polašek | V. Vitart | M. Kähönen | James F. Wilson | S. Saw | Ching-Yu Cheng | T. Aung | C. Khor | J. Vingerling | N. Pfeiffer | J. Bailey-Wilson | W. Tay | C. Hammond | A. Verkerk | A. Hewitt | C. Pennell | T. Zeller | V. Verhoeven | P. Cumberland | René Höhn | A. Mirshahi | J. Rahi | Peng Chen | M. Ikram | Christian Müller | A. Mishra | A. Nag | E. Vithana | P. Hysi | J. Craig | K. Burdon | S. M. Hosseini | S. Yip | B. Pourcain | F. Murgia | C. Pang | R. T. Ong | S. Iyengar | M. Pirastu | J. Guggenheim | T. Young | W. Ang | J. Wedenoja | Jiemin Liao | P. Baird | T. Gorgels | A. Bergen | L. J. Chen | M. Schache | R. Igo | B. Fleck | C. Simpson | Ruoying Li | K. Oexle | Q. Fan | I. Cotlarciuc | V. Barathi | J. Lass | Z. Vatavuk | D. Stambolian | O. Pärssinen | E. Yonova-Doing | R. Wojciechowski | F. Hawthorne | H. Wong | Sarayut Janmahasatian | Kari-Matti Mäkelä | S. Macgregor | C. Williams | Aharon Wegner | Xin Zhou | Daniel W. H. Ho | M. Kähönen | A. Uitterlinden | David M. Evans | A. Wright | A. Hofman | T. Wong | B. Oostra | A. Wright | Ekaterina Yonova-Doing | T. Wong

[1]  Gabriëlle H S Buitendijk,et al.  Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia , 2013, Nature Genetics.

[2]  C. Wildsoet,et al.  Bidirectional, optical sign-dependent regulation of BMP2 gene expression in chick retinal pigment epithelium. , 2012, Investigative ophthalmology & visual science.

[3]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[4]  Neelroop Parikshak,et al.  RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. , 2012, Human molecular genetics.

[5]  Claire L. Simpson,et al.  Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium , 2012, Human Genetics.

[6]  Xiaoping Zhou,et al.  Genetic Variants on Chromosome 1q41 Influence Ocular Axial Length and High Myopia , 2012, PLoS genetics.

[7]  Daniel L. Koller,et al.  Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture , 2012, Nature Genetics.

[8]  B. Pattnaik,et al.  Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium. , 2012, American journal of physiology. Cell physiology.

[9]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[10]  B. Hughes,et al.  KCNQ5/K(v)7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina. , 2011, American journal of physiology. Cell physiology.

[11]  M. Dubé,et al.  Mutations in a novel serine protease PRSS56 in families with nanophthalmos , 2011, Molecular vision.

[12]  Mark I McCarthy,et al.  Genomic inflation factors under polygenic inheritance , 2011, European Journal of Human Genetics.

[13]  Dean Y. Li,et al.  Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. , 2011, American journal of human genetics.

[14]  Richard S. Smith,et al.  Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice , 2011, Nature Genetics.

[15]  Guo-yong Wang,et al.  The roles of ionotropic glutamate receptors along the On and Off signaling pathways in the light-adapted mouse retina , 2011, Brain Research.

[16]  Tao Li,et al.  A genome-wide association study reveals association between common variants in an intergenic region of 4q25 and high-grade myopia in the Chinese Han population. , 2011, Human molecular genetics.

[17]  R. Wojciechowski,et al.  Nature and nurture: the complex genetics of myopia and refractive error , 2011, Clinical genetics.

[18]  H. Fledelius,et al.  Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. , 2011, American journal of human genetics.

[19]  T. Wong,et al.  Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. , 2011, Ophthalmology.

[20]  M. Daly,et al.  Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology , 2011, PLoS genetics.

[21]  R. Crouch,et al.  Retinol dehydrogenases (RDHs) in the visual cycle. , 2010, Experimental eye research.

[22]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[23]  A. Hofman,et al.  A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14 , 2010, Nature Genetics.

[24]  T. Spector,et al.  A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25 , 2010, Nature Genetics.

[25]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[26]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[27]  A. Hofman,et al.  A Genome-Wide Association Study of Optic Disc Parameters , 2010, PLoS genetics.

[28]  A. Verkerk,et al.  A New Strategy to Identify and Annotate Human RPE-Specific Gene Expression , 2010, PloS one.

[29]  Tanya M. Teslovich,et al.  Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index , 2010 .

[30]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[31]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[32]  K. Matsuo,et al.  A Genome-Wide Association Analysis Identified a Novel Susceptible Locus for Pathological Myopia at 11q24.1 , 2009, PLoS genetics.

[33]  S. Wu,et al.  Genetic dissection of rod and cone pathways in the dark-adapted mouse retina. , 2009, Journal of neurophysiology.

[34]  A. Fernández-Medarde,et al.  RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations , 2009, Journal of neurochemistry.

[35]  K. Naidoo,et al.  Potential lost productivity resulting from the global burden of uncorrected refractive error. , 2009, Bulletin of the World Health Organization.

[36]  A. Verkerk,et al.  Functional annotation of the human retinal pigment epithelium transcriptome , 2009, BMC Genomics.

[37]  C. Mahaffey,et al.  Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit Gria4 , 2008, Human molecular genetics.

[38]  G. Abecasis,et al.  Family-based association tests for genomewide association scans. , 2007, American journal of human genetics.

[39]  P. D. de Jong,et al.  Comparison of human retinal pigment epithelium gene expression in macula and periphery highlights potential topographic differences in Bruch's membrane. , 2007, Molecular vision.

[40]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[41]  V. Connaughton Glutamate and Glutamate Receptors in the Vertebrate Retina , 2007 .

[42]  Alexander Nyström,et al.  Laminin isoforms in development and disease , 2007, Journal of Molecular Medicine.

[43]  D. Troilo,et al.  Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets. , 2006, Investigative ophthalmology & visual science.

[44]  Karla Zadnik,et al.  Axial growth and changes in lenticular and corneal power during emmetropization in infants. , 2005, Investigative ophthalmology & visual science.

[45]  C. Wildsoet,et al.  The role of the retinal pigment epithelium in eye growth regulation and myopia: A review , 2005, Visual Neuroscience.

[46]  P. Bovolenta,et al.  Analysis of the developmental SIX6 homeobox gene in patients with anophthalmia/microphthalmia , 2004, American journal of medical genetics. Part A.

[47]  S. McFadden,et al.  Retinoic acid signals the direction of ocular elongation in the guinea pig eye , 2004, Vision Research.

[48]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[49]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[50]  J. Wallman,et al.  Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. , 2000, Experimental eye research.

[51]  E. Martegani,et al.  Expression of Ras‐GRF in the SK‐N‐BE neuroblastoma accelerates retinoic‐acid‐induced neuronal differentiation and increases the functional expression of the IRK1 potassium channel , 1999, The European journal of neuroscience.

[52]  H. Kolb,et al.  Glutamate and Glutamate Receptors in the Vertebrate Retina -- Webvision: The Organization of the Retina and Visual System , 1995 .

[53]  Earl L. Smith,et al.  Refractive-error changes in kitten eyes produced by chronic on-channel blockade , 1991, Vision Research.

[54]  H. Hotelling The Generalization of Student’s Ratio , 1931 .