Self-reconfiguration planning with compressible unit modules

We discuss a robotic system composed of crystalline modules. Crystalline modules can aggregate together to form distributed robot systems. Crystalline modules can move relative to each other by expanding and contracting. This actuation mechanism permits automated shape metamorphosis. We describe the crystalline module concept and show the basic motions that enable a crystalline robot system to self-reconfigure. We present an algorithm for general self-reconfiguration and describe simulation experiments.

[1]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  Gregory S. Chirikjian,et al.  Kinematics of hyper-redundant robot locomotion with applications to grasping , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[3]  R. Cohen,et al.  Conceptual Design of a Modular Robot , 1992 .

[4]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Christiaan J. J. Paredis,et al.  Kinematic Design of Serial Link Manipulators From Task Specifications , 1993, Int. J. Robotics Res..

[6]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[7]  Isao Shimoyama,et al.  Dynamics of Self-Assembling Systems: Analogy with Chemical Kinetics , 1994, Artificial Life.

[8]  Andrew B. Kahng,et al.  Cooperative Mobile Robotics: Antecedents and Directions , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[9]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[10]  Christiaan J. J. Paredis,et al.  Design of modular fault tolerant manipulators , 1995 .

[11]  Arthur C. Sanderson,et al.  Tetrobot family tree: modular synthesis of kinematic structures for parallel robotics , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[12]  Eiichi Yoshida,et al.  Reconfiguration Method for a Distributed Mechanical System , 1996 .

[13]  Arthur C. Sanderson,et al.  TETROBOT modular robotics: prototype and experiments , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[14]  Gregory S. Chirikjian,et al.  Design And Implementation Of Metamorphic Robots , 1996 .

[15]  Daniela Rus,et al.  Navigating 3D steel web structures with an inchworm robot , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[16]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[17]  Daniela Rus,et al.  Task-reconfigurable robots: navigators and manipulators , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[18]  Klara Kedem,et al.  Getting around a lower bound for the minimum Hausdorff distance , 1998, Comput. Geom..

[19]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule: design and control algorithms , 1998 .

[20]  Joel W. Burdick,et al.  Enumerating the Non-IsomorphicAssembly Con gurations of Modular Robotic , 2007 .

[21]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[22]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[23]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..