Study of the ability of multiphase continuum models to predict core-annulus flow†

We use the well established core-annulus flow regime as a numerical benchmark to evaluate the sensitivity of gas–solids continuum models and boundary conditions to model formalisms and parameters. By using transient, 1D, grid-independent numerical solutions, we avoid the use of speculative closure terms and show that the kinetic theory of granular flow (KTGF) is sufficient to model core-annulus regime. That regime arises in the time-average solution as a consequence of the fluctuating motion of regions with high solids concentration. These fluctuations are most sensitive to the gravitational acceleration (g) and granular energy dissipation terms. The fluctuation frequency is α . The effect of fluctuations is so dominant that decreasing the restitution coefficient (KTGF parameter) actually increases the average granular temperature. The wall boundary conditions for solids momentum and granular energy equations dictate the core-annulus flow regime. They must cause a net dissipation of granular energy at the wall for predicting that regime. © 2007 American Institute of Chemical Engineers AIChE J, 2007

[1]  D. Kandhai,et al.  Interphase drag coefficients in gas–solid flows , 2003 .

[2]  Madhava Syamlal,et al.  Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe , 2005 .

[3]  Dimitri Gidaspow,et al.  Computation of flow patterns in circulating fluidized beds , 1990 .

[4]  D. Koch,et al.  Appendix 2: Report of study group on disperse flow ☆ , 2003 .

[5]  Sankaran Sundaresan,et al.  Gas‐solid flow in vertical tubes , 1991 .

[6]  Jennifer S. Curtis,et al.  Modeling particle‐laden flows: A research outlook , 2004 .

[7]  Guy Marin,et al.  The Effects of Abrupt T-Outlets in a Riser: 3D Simulation using the Kinetic Theory of Granular Flow , 2003 .

[8]  H. Weinstein,et al.  RADIAL VARIATION IN SOLID DENSITY IN HIGH VELOCITY FLUIDIZATION , 1986 .

[9]  Madhava Syamlal,et al.  MFIX documentation numerical technique , 1998 .

[10]  M. Syamlal,et al.  Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed , 2003 .

[11]  Sankaran Sundaresan,et al.  Turbulent gas‐particle flow in vertical risers , 1994 .

[12]  M. Syamlal,et al.  The effect of numerical diffusion on simulation of isolated bubbles in a gas-solid fluidized bed , 2001 .

[13]  J. Sinclair,et al.  Gas turbulence modulation in the pneumatic conveying of massive particles in vertical tubes , 1995 .

[14]  Milorad P. Dudukovic,et al.  Solids flow mapping in a gas–solid riser: Mean holdup and velocity fields , 2006 .

[15]  Dimitri Gidaspow,et al.  Dense, vertical gas‐solid flow in a pipe , 1992 .

[16]  Sankaran Sundaresan,et al.  Coarse-Grid Simulation of Gas-Particle Flows in Vertical Risers , 2005 .

[17]  Anuj Srivastava,et al.  Analysis of a frictional-kinetic model for gas-particle flow , 2003 .

[18]  D. Jeffrey,et al.  Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield , 1984, Journal of Fluid Mechanics.

[19]  Jennifer L. Sinclair,et al.  Quantitative predictions of gas-particle flow in a vertical pipe with particle-particle interactions , 1995 .

[20]  S. Sundaresan,et al.  The role of meso-scale structures in rapid gas–solid flows , 2001, Journal of Fluid Mechanics.

[21]  Christine M. Hrenya,et al.  Effects of particle‐phase turbulence in gas‐solid flows , 1997 .

[22]  R. Jackson,et al.  Frictional–collisional constitutive relations for granular materials, with application to plane shearing , 1987, Journal of Fluid Mechanics.

[23]  Jennifer L. Sinclair,et al.  Dilute turbulent gas‐solid flow in risers with particle‐particle interactions , 1995 .

[24]  Michel Y. Louge,et al.  Measurements of the collision properties of small spheres , 1994 .

[25]  Benjamin J. Glasser,et al.  A parametric investigation of gas-particle flow in a vertical duct , 2006 .

[26]  M. Syamlal,et al.  MFIX documentation theory guide , 1993 .

[27]  I. Goldhirsch,et al.  Theory of granular gases: some recent results and some open problems , 2005 .

[28]  D. Gidaspow,et al.  A bubbling fluidization model using kinetic theory of granular flow , 1990 .

[29]  R. Jackson,et al.  Gas‐particle flow in a vertical pipe with particle‐particle interactions , 1989 .

[30]  A. Neri,et al.  Riser hydrodynamics: Simulation using kinetic theory , 2000 .

[31]  J.A.M. Kuipers,et al.  Gas-particle interactions in dense gas-fluidised beds , 2003 .

[32]  Goodarz Ahmadi,et al.  GAS-PARTICLE TWO-PHASE TURBULENT FLOW IN A VERTICAL DUCT , 1995 .

[33]  Measurement of Time-Averaged Particle-Wall Collision Properties Using Particle Tracking Velocimetry, CRADA PC93-006, Final Report , 1995 .

[34]  Jam Hans Kuipers,et al.  Effect of Pressure on flow behaviors in dense gas-fluidized beds: a discrete particle simulation study. , 2002 .

[35]  J. Jenkins Boundary Conditions for Rapid Granular Flow: Flat, Frictional Walls , 1992 .

[36]  H. Arastoopour,et al.  Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase , 2000 .