Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector

[1]  Mohammad Behshad Shafii,et al.  A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design , 2017 .

[2]  Youtong Zhang,et al.  Modeling and experimental research of hybrid PV-thermoelectric system for high concentrated solar energy conversion , 2017 .

[3]  P. Ponnambalam,et al.  The role of thermoelectric generators in the hybrid PV/T systems: A review , 2017 .

[4]  Michele De Carli,et al.  A heat pump coupled with photovoltaic thermal hybrid solar collectors: A case study of a multi-source energy system , 2017 .

[5]  D. Wen,et al.  An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application , 2017 .

[6]  Rodolfo Dufo-López,et al.  Photovoltaic thermal hybrid solar collector and district heating configurations for a Central European multi-family house , 2017 .

[7]  Bourhan Tashtoush,et al.  A Hybrid Concentrated Solar Thermal Collector / Thermo-Electric Generation System , 2017 .

[8]  Bhim Singh,et al.  Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel , 2017 .

[9]  K. S. Reddy,et al.  Simulation studies of thermal and electrical performance of solar linear parabolic trough concentrating photovoltaic system , 2017 .

[10]  Hamid Ez-Zahraouy,et al.  Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation , 2017 .

[11]  Behrooz M. Ziapour,et al.  Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator , 2017 .

[12]  Eduardo F. Fernández,et al.  Scalable Solar Thermoelectrics and Photovoltaics (SUNTRAP) , 2016 .

[13]  Fathollah Pourfayaz,et al.  Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system , 2016 .

[14]  Evangelos Hristoforou,et al.  Experimental analysis and performance evaluation of a tandem photovoltaic–thermoelectric hybrid system , 2016 .

[15]  S. C. Kaushik,et al.  Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system , 2016 .

[16]  Bhim Singh,et al.  Complementary performance enhancement of PV energy system through thermoelectric generation , 2016 .

[17]  Arvind Tiwari,et al.  Performance evaluation of inverted absorber photovoltaic thermal compound parabolic concentrator (PVT-CPC): Constant flow rate mode , 2016 .

[18]  Shi-jun You,et al.  Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors , 2016 .

[19]  Tianjun Liao,et al.  Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system , 2015 .

[20]  Frédéric Lesage,et al.  Performance evaluation of a photoelectric–thermoelectric cogeneration hybrid system , 2015 .

[21]  Lan Xiao,et al.  Performance analysis of photovoltaic–thermoelectric hybrid system with and without glass cover , 2015 .

[22]  Chao Li,et al.  Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector , 2014 .

[23]  Yongliang Li,et al.  Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system , 2014 .

[24]  Yuan Wang,et al.  Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device , 2014 .

[25]  K. Woodbury,et al.  Optimization of a cooling system based on Peltier effect for photovoltaic cells , 2013 .

[26]  Girish Kumar Singh,et al.  Solar power generation by PV (photovoltaic) technology: A review , 2013 .

[27]  S. Kalogirou A detailed thermal model of a parabolic trough collector receiver , 2012 .

[28]  Francesco Calise,et al.  Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model , 2012 .

[29]  N. Ravindra,et al.  Temperature dependence of solar cell performance—an analysis , 2012 .

[30]  Evelyn N. Wang,et al.  Modeling and Optimization of Hybrid Solar Thermoelectric Systems with Thermosyphons , 2011 .

[31]  Xu Ji,et al.  Performance investigation and optimization of the Trough Concentrating Photovoltaic/Thermal system , 2011 .

[32]  P. Hu,et al.  Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology , 2010 .

[33]  S. Kalogirou Solar Energy Engineering: Processes and Systems , 2009 .

[34]  E. Skoplaki,et al.  ON THE TEMPERATURE DEPENDENCE OF PHOTOVOLTAIC MODULE ELECTRICAL PERFORMANCE: A REVIEW OF EFFICIENCY/ POWER CORRELATIONS , 2009 .

[35]  J. Coventry Performance of a concentrating photovoltaic/thermal solar collector , 2005 .

[36]  R. Forristall,et al.  Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver , 2003 .

[37]  W. Chow,et al.  Solar radiation model , 2001 .

[38]  H. P. Garg,et al.  Performance analysis of a hybrid photovoltaic/thermal (PV/T) collector with integrated CPC troughs , 1999 .

[39]  A. C. Ratzel,et al.  Techniques for reducing thermal conduction and natural convection heat losses in annular receiver geometries , 1979 .

[40]  Robert Hull,et al.  Properties of Crystalline Silicon , 1999 .

[41]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[42]  V. Gnielinski New equations for heat and mass transfer in the turbulent flow in pipes and channels , 1975 .