An improved immune algorithm for optimizing the pulse width modulation control sequence of inverters

ABSTRACT In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.

[1]  J. Sun,et al.  Optimal PWM based on real-time solution of harmonic elimination equations , 1996 .

[2]  Xingsheng Gu,et al.  Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning , 2016 .

[3]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[4]  B. Holland,et al.  An Improved Sequentially Rejective Bonferroni Test Procedure , 1987 .

[5]  Hui Li,et al.  Optimized PWM strategy based on genetic algorithms , 2005, IEEE Transactions on Industrial Electronics.

[6]  R. Dhifaoui,et al.  Weighted Differential Evolution Based PWM Optimization for Single Phase Voltage Source Inverter , 2010 .

[7]  S. L. Ho,et al.  Speed estimation of an induction motor drive using an optimized extended Kalman filter , 2002, IEEE Trans. Ind. Electron..

[8]  Guillermo Alberto Camacho Muñoz,et al.  Nuevo algoritmo PWM híbrido de desempeño armónico superior , 2009 .

[9]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[10]  Ying Tan,et al.  Artificial Immune System , 2016 .

[11]  V. Rajamani,et al.  Design and Real-Time Implementation of SHEPWM in Single-Phase Inverter Using Generalized Hopfield Neural Network , 2014, IEEE Transactions on Industrial Electronics.

[12]  Jiaxin Yuan,et al.  Possible analogy between the optimal digital pulse width modulation technology and the equivalent optimisation problem , 2012 .

[13]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[14]  Leandro Nunes de Castro,et al.  Artificial Immune Systems: Part I-Basic Theory and Applications , 1999 .

[15]  D. Dasgupta,et al.  Advances in artificial immune systems , 2006, IEEE Computational Intelligence Magazine.

[16]  Shaahin Filizadeh,et al.  An adaptive multi-modal optimization algorithm for simulation-based design of power-electronic circuits , 2009 .

[17]  G. Hommel A stagewise rejective multiple test procedure based on a modified Bonferroni test , 1988 .

[18]  Mohammad Tavakoli Bina,et al.  Optimizing a discrete switching pattern using two simulated annealing algorithms , 2000, COMPEL 2000. 7th Workshop on Computers in Power Electronics. Proceedings (Cat. No.00TH8535).

[19]  Mohamed Batouche,et al.  An Artificial Immune System for Multimodality Image Alignment , 2003, ICARIS.

[20]  S. Tonegawa,et al.  Somatic generation of antibody diversity. , 1976, Nature.

[21]  D. A. Torrey,et al.  Genetic algorithms for control of power converters , 1995, Proceedings of PESC '95 - Power Electronics Specialist Conference.

[22]  L. Darrell Whitley,et al.  Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks , 2006, PPSN.

[23]  D. Rom A sequentially rejective test procedure based on a modified Bonferroni inequality , 1990 .

[24]  Cheng-Shion Shieh,et al.  Fuzzy PWM based on Genetic Algorithm for battery charging , 2014, Appl. Soft Comput..

[25]  S. Tonegawa Somatic generation of antibody diversity , 1983, Nature.

[26]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[27]  J. Baba,et al.  Genetic algorithm based control for power converters , 1997, Proceedings of Power Conversion Conference - PCC '97.

[28]  Y. Hochberg A sharper Bonferroni procedure for multiple tests of significance , 1988 .

[29]  Jianjun Li A two-step rejection procedure for testing multiple hypotheses , 2008 .

[30]  Anoop K. Dhingra,et al.  An efficient approach for reliability-based topology optimization , 2016 .

[31]  Chao Cai,et al.  An Immune-Algorithm-Based Space-Vector PWM Control Strategy in a Three-Phase Inverter , 2013, IEEE Transactions on Industrial Electronics.

[32]  Jiaxin Yuan,et al.  An Immune Algorithm Based Approach to Inverter Control , 2009, 2009 Fifth International Conference on Natural Computation.

[33]  H. Finner On a Monotonicity Problem in Step-Down Multiple Test Procedures , 1993 .

[34]  N. Rajasekar,et al.  Selective voltage harmonic elimination in PWM inverter using bacterial foraging algorithm , 2015, Swarm Evol. Comput..

[35]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[36]  A. Mohd,et al.  Review of control techniques for inverters parallel operation , 2010 .