Exploring Gusev Crater with spirit: Review of science objectives and testable hypotheses

[1] Gusev Crater was selected as the landing site for the Mars Exploration Rover (MER) Spirit mission. Located at the outlet of Ma'adim Vallis and 250 km south of the volcano Apollinaris Patera, Gusev is an outstanding site to achieve the goals of the MER mission. The crater could have collected sediments from a variety of sources during its 3.9 Ga history, including fluvial, lacustrine, volcanic, glacial, impact, regional and local aeolian, and global air falls. It is a unique site to investigate the past history of water on Mars, climate and geological changes, and the potential habitability of the planet, which are central science objectives of the MER mission. Because of its complex history and potential diversity, Gusev will allow the testing of a large spectrum of hypotheses with the complete suite of MER instruments. Evidence consistent with long-lived lake episodes exist in the landing ellipse area. They might offer a unique opportunity to study, for the first time, Martian aqueous sediments and minerals formed in situ in their geological context. We review the geological history and diversity of the landing site, the science hypotheses that can be tested during the MER mission, and the relevance of Gusev to the MER mission objectives and payload.

[1]  R. Greeley,et al.  Wind‐related features in Gusev crater, Mars , 2003 .

[2]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[3]  P. Christensen Formation of recent martian gullies through melting of extensive water-rich snow deposits , 2003, Nature.

[4]  P. Christensen,et al.  THEMIS characterization of the MER Gusev crater landing site , 2003 .

[5]  M. Carr Elevations of water-worn features on Mars: Implications for circulation of groundwater , 2002 .

[6]  S. Stewart,et al.  Surface runoff features on Mars: Testing the carbon dioxide formation hypothesis , 2002 .

[7]  D. Leverington,et al.  A Large Paleolake Basin at the Head of Ma'adim Vallis, Mars , 2002, Science.

[8]  S. Squyres,et al.  Hydrothermal systems associated with martian impact craters , 2002 .

[9]  James H. Roark,et al.  Ancient lowlands on Mars , 2002 .

[10]  P. Allemand,et al.  An instability mechanism in the formation of the Martian lobate craters and the implications for the rheology of ejecta , 2002 .

[11]  P. Lee,et al.  Gullies on Mars: Clues to Their Formation Timescale from Possible Analogs from Devon Island, Nunavut, Arctic Canada , 2002 .

[12]  G. Neumann,et al.  Modelling Mass Movements for Planetary Studies , 2002 .

[13]  J. Gutmann Strombolian and effusive activity as precursors to phreatomagmatism: eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico , 2002 .

[14]  N. Barlow,et al.  Comparisons of Ejecta Mobility Ratios in the Northern and Southern Hemispheres of Mars , 2002 .

[15]  H. P. Gunnlaugsson,et al.  Titanomaghemite in Icelandic basalt: possible clues for the strongly magnetic phase in Martian soil and dust , 2002 .

[16]  Steven H. Silverman,et al.  Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.

[17]  T. Parker,et al.  The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains , 2001 .

[18]  V. Baker Water and the martian landscape , 2001, Nature.

[19]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[20]  Jonathan I. Lunine,et al.  Liquid CO2 breakout and the formation of recent small gullies on Mars , 2001 .

[21]  De Hon Martian Sedimentary Provinces , 2001 .

[22]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[23]  J. Farmer Hydrothermal systems: Doorways to early biosphere evolution , 2000 .

[24]  François Costard,et al.  Standardizing the nomenclature of Martian impact crater ejecta morphologies , 2000 .

[25]  M. Malin,et al.  Meter-Scale Characteristics of Martian Channels and Valleys , 2000 .

[26]  N. Hoffman White Mars: A New Model for Mars' Surface and Atmosphere Based on CO2 , 2000 .

[27]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[28]  James B. Garvin,et al.  North Polar Region Craterforms on Mars: Geometric Characteristics from the Mars Orbiter Laser Altimeter , 2000 .

[29]  Kenneth L. Tanaka Dust and Ice Deposition in the Martian Geologic Record , 2000 .

[30]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[31]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[32]  Carl F. Schueler,et al.  Miniature thermal emission spectrometer for Mars 2001 Lander , 1999, Optics & Photonics.

[33]  David C. Catling,et al.  A chemical model for evaporites on early Mars: Possible sedimentary tracers of the early climate and implications for exploration , 1999 .

[34]  A. McEwen,et al.  Voluminous volcanism on early Mars revealed in Valles Marineris , 1999, Nature.

[35]  James B. Garvin,et al.  Geometric properties of Martian impact craters: Preliminary results from the Mars Orbiter Laser Altimeter , 1998 .

[36]  Virginia C. Gulick,et al.  Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars , 1998 .

[37]  Nathalie A. Cabrol,et al.  Ma'adim Vallis Evolution: Geometry and Models of Discharge Rate , 1998 .

[38]  H Y McSween,et al.  The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. , 1997, Science.

[39]  Nathalie A. Cabrol,et al.  Limnologic Analysis of Gusev Crater Paleolake, Mars , 1997 .

[40]  J. Böhlke,et al.  Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A. , 1997 .

[41]  D. H. Yaalon,et al.  THE MICROMORPHOLOGY OF GYPSUM AND HALITE IN REG SOILS—THE NEGEV DESERT, ISRAEL , 1996 .

[42]  Nathalie A. Cabrol,et al.  Ma'adim Vallis Revisited through New Topographic Data: Evidence for an Ancient Intravalley Lake , 1996 .

[43]  T. Ku,et al.  A 100 ka record of water tables and paleoclimates from salt cores, Death Valley, California , 1996 .

[44]  M. Carr The Martian drainage system and the origin of valley networks and fretted channels , 1995 .

[45]  P. Mouginis-Mark,et al.  Chronology, Eruption Duration, and Atmospheric Contribution of the Martian Volcano Apollinaris Patera , 1993 .

[46]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[47]  Nadine G. Barlow,et al.  Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain , 1990 .

[48]  F. Costard The spatial distribution of volatiles in the Martian hydrolithosphere , 1989 .

[49]  R. Fournier Geochemistry and Dynamics of the Yellowstone National Park Hydrothermal System , 1989 .

[50]  Richard A. Schultz,et al.  Large impact basins and the mega-impact origin for the crustal dichotomy on Mars , 1988 .

[51]  S. Clifford Polar basal melting on Mars , 1987 .

[52]  M. Carr Water on Mars , 1987, Nature.

[53]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[54]  M. Carr,et al.  Possible precipitation of ice at low latitudes of Mars during periods of high obliquity , 1985, Nature.

[55]  S. Squyres,et al.  Thickness of ice on perennially frozen lakes , 1985, Nature.

[56]  M. Carr,et al.  Martian channels and valleys: Their characteristics, distribution, and age , 1981 .

[57]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[58]  P. Mouginis-Mark Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material , 1979 .

[59]  Thomas S. Ahlbrandt,et al.  Origin, sedimentary features, and significance of low-angle eolian "sand sheet" deposits, Great Sand Dunes National Monument and vicinity, Colorado , 1979 .

[60]  R. Arvidson,et al.  Latitudinal variation of wind erosion of crater ejecta deposits on Mars , 1976 .

[61]  Michael C. Malin,et al.  Channels on Mars , 1975 .

[62]  Victor R. Baker,et al.  Erosion by catastrophic floods on Mars and Earth , 1974 .

[63]  John F. McCauley,et al.  Mariner 9 evidence for wind erosion in the equatorial and mid‐latitude regions of Mars , 1973 .

[64]  Harold Masursky,et al.  An overview of geological results from Mariner 9 , 1973 .

[65]  Size Limits of Very Small Microorganisms , 2004 .

[66]  D. J.,et al.  Filamentous fabrics in low-temperature mineral assemblages : are they fossil biomarkers ? Implications for the search for a subsurface fossil record on the early Earth and Mars , 2004 .

[67]  F. Forget,et al.  Narrow Gullies over High Sand Dunes on Mars: Evidence for Flows Triggered by Liquid Water Near Surface , 2002 .

[68]  H. Newsom,et al.  Location and sampling of aqueous and hydrothermal deposits in martian impact craters. , 2001, Astrobiology.

[69]  M. Golombek,et al.  Preliminary Engineering Constraints and Potential Landing Sites for the Mars Exploration Rovers , 2001 .

[70]  H. Newsom,et al.  New Evidence for Impact-induced Hydrothermal Alteration at the Lunar Crater, India: Implications for the Effect of Small Craters on the Mineralogical and Chemical Composition of the Martian Regolith , 2001 .

[71]  W. Hartmann,et al.  Martian Cratering 7: The Role of Impact Gardening , 2001 .

[72]  H. Newsom,et al.  Availability of Heat to Drive Hydrothermal Systems in Large Martian Impact Craters , 2001 .

[73]  R. Greeley,et al.  Geologic map of the MTM-15182 and MTM-15187 quadrangles, Gusev Crater-Ma'adim Vallis region, Mars , 2000 .

[74]  L. Crossey,et al.  Post-impact hydrothermal alteration of the Manson impact structure , 1996 .

[75]  N. Glasser,et al.  Glacial Geology: Ice Sheets and Landforms , 1996 .

[76]  N. Cabrol,et al.  A morphological view on potential niches for exobiology on Mars. , 1995, Planetary and space science.

[77]  Ronald Greeley,et al.  Martian aeolian processes, sediments, and features. , 1992 .

[78]  D. H. Scott,et al.  Geologic map of the Valles Marineris region, Mars , 1991 .

[79]  Ronald Greeley,et al.  The resurfacing history of Mars - A synthesis of digitized, viking-based geology , 1988 .

[80]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[81]  K. Pye Aeolian dust and dust deposits , 1987 .

[82]  Ray A F Cas,et al.  Volcanic successions, modern and ancient : a geological approach to processes, products, and successions , 1987 .

[83]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[84]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[85]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[86]  P. Mouginis-Mark Ejecta emplacement and modes of formation of Martian fluidized ejecta craters , 1981 .

[87]  G. E. Ericksen GEOLOGY AND ORIGIN OF THE CHILEAN NITRATE DEPOSITS , 1981 .