Dissipative effects in nonideal supercapacitors and batteries

[1]  Rafael Vicentini,et al.  Proposal of a novel methodology for the electrochemical characterization of well-behaved redox-active materials used in supercapacitors , 2023, Electrochimica Acta.

[2]  Rafael Vicentini,et al.  Ion dynamics into different pore size distributions in supercapacitors under compression , 2023, Journal of Energy Chemistry.

[3]  Rafael Vicentini,et al.  Best practices for electrochemical characterization of supercapacitors , 2023, Journal of Energy Chemistry.

[4]  Rafael Vicentini,et al.  Boosting energy-storage capability in carbon-based supercapacitors using low-temperature water-in-salt electrolytes , 2022, Journal of Energy Chemistry.

[5]  Rafael Vicentini,et al.  New Insights on the Sodium Water-in-Salt Electrolyte and Carbon Electrode Interface from Electrochemistry and Operando Raman Studies. , 2021, ACS applied materials & interfaces.

[6]  Rafael Vicentini,et al.  Niobium pentoxide nanoparticles decorated graphene as electrode material in aqueous-based supercapacitors: Accurate determination of the working voltage window and the analysis of the distributed capacitance in the time domain , 2021, Journal of Energy Storage.

[7]  H. Zanin,et al.  Recent advances on quasi-solid-state electrolytes for supercapacitors , 2021, Journal of Energy Chemistry.

[8]  Rafael Vicentini,et al.  Analyses of dispersive effects and the distributed capacitance in the time and frequency domains of activated carbon nanofiber electrodes as symmetric supercapacitors , 2021, Electrochimica Acta.

[9]  Rafael Vicentini,et al.  Ragone Plots for Electrochemical Double‐Layer Capacitors , 2021, Batteries & Supercaps.

[10]  Simona Onori,et al.  Experimental analysis and analytical modeling of Enhanced-Ragone plot , 2021, Applied Energy.

[11]  A. Burke,et al.  Review on supercapacitors: Technologies and performance evaluation , 2020 .

[12]  R. M. Filho,et al.  A rational experimental approach to identify correctly the working voltage window of aqueous-based supercapacitors , 2020, Scientific Reports.

[13]  Rafael Vicentini,et al.  Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials , 2020 .

[14]  P. Taberna,et al.  Nanoporous carbon for electrochemical capacitive energy storage. , 2020, Chemical Society reviews.

[15]  A. Elwakil,et al.  Communication—The Ragone Plot of Supercapacitors Under Different Loading Conditions , 2020 .

[16]  T. Holm,et al.  Experimental verification of pore impedance theory: Drilled graphite electrodes with gradually more complex pore size distribution , 2019, Electrochimica Acta.

[17]  Y. Gogotsi,et al.  Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems , 2019, Advanced Energy Materials.

[18]  Rafael Vicentini,et al.  How to Measure and Calculate Equivalent Series Resistance of Electric Double-Layer Capacitors , 2019, Molecules.

[19]  Abolhassan Noori,et al.  Towards establishing standard performance metrics for batteries, supercapacitors and beyond. , 2019, Chemical Society reviews.

[20]  Jagannathan Thirumalai,et al.  A review on recent advances in hybrid supercapacitors: Design, fabrication and applications , 2019, Renewable and Sustainable Energy Reviews.

[21]  Poonam,et al.  Review of supercapacitors: Materials and devices , 2019, Journal of Energy Storage.

[22]  T. Fuller,et al.  Electrochemical Engineering , 2018, Advances in Electrochemical Sciences and Engineering.

[23]  Thierry Brousse,et al.  Ni(OH)2 and NiO Based Composites: Battery Type Electrode Materials for Hybrid Supercapacitor Devices , 2018, Materials.

[24]  L. Borchardt,et al.  Revising the Concept of Pore Hierarchy for Ionic Transport in Carbon Materials for Supercapacitors , 2018, Advanced Energy Materials.

[25]  M. Manoj,et al.  Acid Washed, Steam Activated, Coconut Shell Derived Carbon for High Power Supercapacitor Applications , 2018 .

[26]  Bruce Dunn,et al.  Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices , 2018 .

[27]  Doron Aurbach,et al.  Carbon-based composite materials for supercapacitor electrodes: a review , 2017 .

[28]  Yitao He Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors , 2017, Electrochimica Acta.

[29]  Alexander C. Forse,et al.  Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy , 2017, Nature Energy.

[30]  Jianbo Zhang,et al.  Theory of Impedance Response of Porous Electrodes: Simplifications, Inhomogeneities, Non-Stationarities and Applications , 2016 .

[31]  Woo Young Jung,et al.  Analogical Understanding of the Ragone plot and a New Categorization of Energy Devices , 2016 .

[32]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[33]  Eider Goikolea,et al.  Review on supercapacitors: Technologies and materials , 2016 .

[34]  John M. Griffin,et al.  New Perspectives on the Charging Mechanisms of Supercapacitors , 2016, Journal of the American Chemical Society.

[35]  Patrice Simon,et al.  Multi-scale modelling of supercapacitors:From molecular simulations to a transmission line model , 2016, 1603.06640.

[36]  A. Kuperman,et al.  Long-Term Wide-Temperature Supercapacitor Ragone Plot Based on Manufacturer Datasheet , 2016, IEEE Transactions on Energy Conversion.

[37]  G. Amaratunga,et al.  Understanding Capacitance Variation in Sub-nanometer Pores by in Situ Tuning of Interlayer Constrictions. , 2016, ACS nano.

[38]  B. McCloskey Expanding the Ragone Plot: Pushing the Limits of Energy Storage. , 2015, The journal of physical chemistry letters.

[39]  Jinjun Zhang,et al.  Electrochemical Supercapacitors for Energy Storage and Conversion , 2014 .

[40]  P. Taberna,et al.  On the dynamics of charging in nanoporous carbon-based supercapacitors. , 2014, ACS nano.

[41]  Jonathan J. Travis,et al.  Pseudocapacitance of Amorphous TiO2 Thin Films Anchored to Graphene and Carbon Nanotubes Using Atomic Layer Deposition , 2013 .

[42]  Taihong Wang,et al.  Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. , 2013, ACS applied materials & interfaces.

[43]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[44]  X. Lou,et al.  Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors , 2012 .

[45]  H. Alshareef,et al.  Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. , 2012, Nano letters.

[46]  Xiaobo Ji,et al.  Electrochemical capacitors utilising transition metal oxides: an update of recent developments , 2011 .

[47]  Peter T. Cummings,et al.  Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size , 2011 .

[48]  Jianzhong Wu,et al.  Oscillation of capacitance inside nanopores. , 2011, Nano letters.

[49]  N Georgi,et al.  A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. , 2011, Physical chemistry chemical physics : PCCP.

[50]  M. Pumera Graphene-based nanomaterials and their electrochemistry. , 2010, Chemical Society reviews.

[51]  B. Sumpter,et al.  Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors , 2010 .

[52]  Guangwu Yang,et al.  Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. , 2008, Chemical communications.

[53]  Jie Chen,et al.  An impedance-based approach to predict the state-of-charge for carbon-based supercapacitors , 2008 .

[54]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[55]  Vinay Gupta,et al.  Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors , 2008 .

[56]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[58]  Pierre-Louis Taberna,et al.  High power density electrodes for Carbon supercapacitor applications , 2005 .

[59]  J. Dufrêche,et al.  Analytical theories of transport in concentrated electrolyte solutions from the MSA. , 2005, The journal of physical chemistry. B.

[60]  W. Coffey Dielectric relaxation: an overview , 2004 .

[61]  Christian Ohler,et al.  Optimizing energy storage devices using Ragone plots , 2002 .

[62]  Deyang Qu,et al.  The ac impedance studies for porous MnO2 cathode by means of modified transmission line model , 2001 .

[63]  Thomas Christen,et al.  Theory of Ragone plots , 2000 .

[64]  L. Dao,et al.  The effect of pore size distribution on the frequency dispersion of porous electrodes , 2000 .

[65]  Albert Compte,et al.  Anomalous transport effects in the impedance of porous film electrodes , 1999 .

[66]  Venkat Srinivasan,et al.  Mathematical Modeling of Electrochemical Capacitors , 1999 .

[67]  B. Conway,et al.  Quantitative modeling of factors determining Ragone plots for batteries and electrochemical capacitors , 1996 .

[68]  Atsushi Nishino,et al.  Capacitors: operating principles, current market and technical trends , 1996 .

[69]  S. Westerlund,et al.  Capacitor theory , 1994 .

[70]  K. Micka,et al.  Theory of the electrochemical impedance of macrohomogeneous porous electrodes , 1993 .

[71]  D. Macdonald The Point Defect Model for the Passive State , 1992 .

[72]  J. R. Vilche,et al.  Electrochemical impedance spectroscopy on porous electrodes , 1990 .

[73]  P. Delahay,et al.  Electrode impedance without a priori separation of double-layer charging and faradaic process , 1967 .

[74]  P. Delahay,et al.  RELAXATION ELECTRODE PROCESSES WITHOUT A PRIORI SEPARATION OF DOUBLE LAYER CHARGING. , 1966 .

[75]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[76]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .

[77]  J. Kirkwood The Dielectric Polarization of Polar Liquids , 1939 .

[78]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[79]  Rafael Vicentini,et al.  In-situ electrochemical and operando Raman techniques to investigate the effect of porosity in different carbon electrodes in organic electrolyte supercapacitors , 2022, Journal of Energy Storage.

[80]  C. Randall,et al.  Prediction of charge-discharge and impedance characteristics of electric double-layer capacitors using porous electrode theory , 2017 .

[81]  D. Dubal,et al.  Nickel cobaltite as an emerging material for supercapacitors: An overview , 2015 .

[82]  Juan Bisquert,et al.  Influence of the boundaries in the impedance of porous film electrodes , 2000 .

[83]  R. Schiller The Stokes-Einstein law by macroscopic arguments , 1991 .