How to integrate a polynomial over a simplex

This paper starts by settling the computational complexity of the problem of integrating a polynomial function f over a rational simplex. We prove that the problem is NP-hard for arbitrary polynomials via a generalization of a theorem of Motzkin and Straus. On the other hand, if the polynomial depends only on a fixed number of variables, while its degree and the dimension of the simplex are allowed to vary, we prove that integration can be done in polynomial time. As a consequence, for polynomials of fixed total degree, there is a polynomial time algorithm as well. We explore our algorithms with some experiments. We conclude the article with extensions to other polytopes and discussion of other available methods. 1.

[1]  G. Brightwell,et al.  Counting linear extensions , 1991 .

[2]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[3]  Ronald Cools,et al.  An adaptive numerical cubature algorithm for simplices , 2003, TOMS.

[4]  G. Ottaviani,et al.  On the Alexander–Hirschowitz theorem , 2007, math/0701409.

[5]  H. M. Möller,et al.  Invariant Integration Formulas for the n-Simplex by Combinatorial Methods , 1978 .

[6]  Konstantin Avrachenkov,et al.  The Multi-Dimensional Version of ∫ba xp dx , 2001, Am. Math. Mon..

[7]  Nicole Berline,et al.  Local Euler-Maclaurin formula for polytopes , 2005, math/0507256.

[8]  Luis Rademacher,et al.  Approximating the centroid is hard , 2007, SCG '07.

[9]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[10]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[11]  György Elekes,et al.  A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..

[12]  A. Ivic Sums of squares , 2020, An Introduction to 𝑞-analysis.

[13]  O. Taussky Sums of Squares , 1970 .

[14]  Jean B. Lasserre,et al.  Integration on a convex polytope , 1998 .

[15]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.

[16]  János Pach New Trends in Discrete and Computational Geometry , 2013 .

[17]  L. Khachiyan Complexity of Polytope Volume Computation , 1993 .

[18]  Zhiqiang Xu,et al.  Multivariate splines and polytopes , 2008, J. Approx. Theory.

[19]  J. Lawrence Polytope volume computation , 1991 .

[20]  G. Ziegler Lectures on Polytopes , 1994 .

[21]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[22]  A. T. Bharucha-Reid,et al.  Random Matrices and Random Algebraic Polynomials , 1986 .

[23]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[24]  Ronald Cools,et al.  Algorithm 824: CUBPACK: a package for automatic cubature; framework description , 2003, TOMS.

[25]  Murray Schechter,et al.  INTEGRATION OVER A POLYHEDRON : AN APPLICATION OF THE FOURIER-MOTZKIN ELIMINATION METHOD , 1998 .

[26]  A. I. Barvinok,et al.  Exponential sums and integrals over convex polytopes , 1992 .

[27]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[28]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[29]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[30]  Wolfgang Dahmen,et al.  On Multivariate B-Splines , 1980 .

[31]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  J. Altenbach Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw‐Hill Book Company (UK) Limited. 1977. XV, 787 S. , 1980 .

[34]  C. Micchelli Mathematical aspects of geometric modeling , 1987 .

[35]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[36]  Bernd Sturmfels,et al.  Marginal Likelihood Integrals for Mixtures of Independence Models , 2008, J. Mach. Learn. Res..

[37]  Guillermo Matera,et al.  Integration of Multivariate Rational Functions Given by Straight-Line Programs , 1995, AAECC.

[38]  Michèle Vergne,et al.  Lattice points in simple polytopes , 1997 .

[39]  Velleda Baldoni,et al.  Local Euler-Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of a rational polytope , 2007 .

[40]  Long Chen FINITE ELEMENT METHOD , 2013 .

[41]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[42]  A. I. Barvinok Computation of exponential integrals , 1994 .

[43]  Kyriakos Kalorkoti ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .

[44]  Martin E. Dyer,et al.  On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..