Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions

We study graph properties that admit an increasing, or equivalently decreasing, sequence of graphs on the same vertex set such that for any two consecutive graphs in the sequence their difference is a single edge. This is useful for characterizing and computing minimal completions and deletions of arbitrary graphs into having these properties. We prove that threshold graphs and chain graphs admit such sequences. Based on this characterization and other structural properties, we present linear-time algorithms both for computing minimal completions and deletions into threshold, chain, and bipartite graphs, and for extracting a minimal completion or deletion from a given completion or deletion. Minimum completions and deletions into these classes are NP-hard to compute.

[1]  Leonidas Palios,et al.  An Optimal Parallel Co-Connectivity Algorithm , 2004, Theory of Computing Systems.

[2]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[3]  H. Djidjev A Linear Algorithm for Finding a Maximal Planar Subgraph , 1995 .

[4]  Mitsuo Yokoyama,et al.  Linear Time Algorithms for Graph Search and Connectivity Determination on Complement Graphs , 1998, Inf. Process. Lett..

[5]  Pinar Heggernes,et al.  A practical algorithm for making filled graphs minimal , 2001, Theor. Comput. Sci..

[6]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[7]  P. Heggernes,et al.  Computing Minimal Triangulations in Time , 2005 .

[8]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..

[9]  Wen-Lian Hsu,et al.  A Linear Time Algorithm for Finding a Maximal Planar Subgraph Based on PC-Trees , 2005, COCOON.

[10]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[11]  Louis Ibarra,et al.  Fully dynamic algorithms for chordal graphs , 1999, SODA '99.

[12]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[13]  Daniel Meister,et al.  Recognition and computation of minimal triangulations for AT-free claw-free and co-comparability graphs , 2005, Discret. Appl. Math..

[14]  Arie M. C. A. Koster,et al.  Safe separators for treewidth , 2006, Discret. Math..

[15]  R. Sharan,et al.  Complexity classication of some edge modication problems , 1999 .

[16]  Roded Sharan,et al.  A fully dynamic algorithm for modular decomposition and recognition of cographs , 2004, Discret. Appl. Math..

[17]  D. Koenig Theorie Der Endlichen Und Unendlichen Graphen , 1965 .

[18]  Fedor V. Fomin,et al.  Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.

[19]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[20]  Elias Dahlhaus,et al.  Minimal Elimination Ordering Inside a Given Chordal Graph , 1997, WG.

[21]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[22]  Pinar Heggernes,et al.  Characterizing Minimal Interval Completions , 2007, STACS.

[23]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[24]  Pinar Heggernes,et al.  Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions , 2009, Theor. Comput. Sci..

[25]  Béla Bollobás,et al.  Measures on monotone properties of graphs , 2002, Discret. Appl. Math..

[26]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[27]  P. Heggernes,et al.  Characterizing minimal interval completions towards better understanding of profile and pathwidth , 2007 .

[28]  Pinar Heggernes,et al.  Minimal Split Completions of Graphs , 2006, LATIN.

[29]  Pinar Heggernes,et al.  Computing Minimal Triangulations in Time O(nalpha log n) = o(n 2.376) , 2005, SIAM J. Discret. Math..

[30]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[31]  Douglas R. Shier,et al.  Maximal chordal subgraphs , 1988, Discret. Appl. Math..

[32]  Andreas Parra,et al.  Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..

[33]  Ioan Todinca,et al.  Minimal interval completion through graph exploration , 2006, Theor. Comput. Sci..

[34]  Ivan Rapaport,et al.  Minimal Proper Interval Completions , 2006, WG.

[35]  Hristo Djidjev,et al.  A Linear-Time Algorithm for Finding a Maximal Planar Subgraph , 2006, SIAM J. Discret. Math..

[36]  Flavia Bonomo,et al.  NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..

[37]  Mihalis Yannakakis,et al.  Node-Deletion Problems on Bipartite Graphs , 1981, SIAM J. Comput..

[38]  P. Heggernes,et al.  Computing minimal triangulations in time O(nα log n) = o(n2.376) , 2005, SODA '05.

[39]  Mihály Bakonyi,et al.  Several results on chordal bipartite graphs , 1997 .

[40]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[41]  Pinar Heggernes,et al.  Making Arbitrary Graphs Transitively Orientable: Minimal Comparability Completions , 2006, ISAAC.

[42]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[43]  Noga Alon,et al.  Every monotone graph property is testable , 2005, STOC '05.

[44]  Sheng-Lung Peng,et al.  On the interval completion of chordal graphs , 2006, Discret. Appl. Math..

[45]  Pinar Heggernes,et al.  A completely dynamic algorithm for split graphs , 2006, Electron. Notes Discret. Math..

[46]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .