Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions
暂无分享,去创建一个
[1] Leonidas Palios,et al. An Optimal Parallel Co-Connectivity Algorithm , 2004, Theory of Computing Systems.
[2] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[3] H. Djidjev. A Linear Algorithm for Finding a Maximal Planar Subgraph , 1995 .
[4] Mitsuo Yokoyama,et al. Linear Time Algorithms for Graph Search and Connectivity Determination on Complement Graphs , 1998, Inf. Process. Lett..
[5] Pinar Heggernes,et al. A practical algorithm for making filled graphs minimal , 2001, Theor. Comput. Sci..
[6] Haim Kaplan,et al. Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..
[7] P. Heggernes,et al. Computing Minimal Triangulations in Time , 2005 .
[8] Roded Sharan,et al. Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..
[9] Wen-Lian Hsu,et al. A Linear Time Algorithm for Finding a Maximal Planar Subgraph Based on PC-Trees , 2005, COCOON.
[10] Haim Kaplan,et al. Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..
[11] Louis Ibarra,et al. Fully dynamic algorithms for chordal graphs , 1999, SODA '99.
[12] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[13] Daniel Meister,et al. Recognition and computation of minimal triangulations for AT-free claw-free and co-comparability graphs , 2005, Discret. Appl. Math..
[14] Arie M. C. A. Koster,et al. Safe separators for treewidth , 2006, Discret. Math..
[15] R. Sharan,et al. Complexity classication of some edge modication problems , 1999 .
[16] Roded Sharan,et al. A fully dynamic algorithm for modular decomposition and recognition of cographs , 2004, Discret. Appl. Math..
[17] D. Koenig. Theorie Der Endlichen Und Unendlichen Graphen , 1965 .
[18] Fedor V. Fomin,et al. Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.
[19] M. Golummc. Algorithmic graph theory and perfect graphs , 1980 .
[20] Elias Dahlhaus,et al. Minimal Elimination Ordering Inside a Given Chordal Graph , 1997, WG.
[21] D. Rose. A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .
[22] Pinar Heggernes,et al. Characterizing Minimal Interval Completions , 2007, STACS.
[23] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .
[24] Pinar Heggernes,et al. Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions , 2009, Theor. Comput. Sci..
[25] Béla Bollobás,et al. Measures on monotone properties of graphs , 2002, Discret. Appl. Math..
[26] N. Mahadev,et al. Threshold graphs and related topics , 1995 .
[27] P. Heggernes,et al. Characterizing minimal interval completions towards better understanding of profile and pathwidth , 2007 .
[28] Pinar Heggernes,et al. Minimal Split Completions of Graphs , 2006, LATIN.
[29] Pinar Heggernes,et al. Computing Minimal Triangulations in Time O(nalpha log n) = o(n 2.376) , 2005, SIAM J. Discret. Math..
[30] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[31] Douglas R. Shier,et al. Maximal chordal subgraphs , 1988, Discret. Appl. Math..
[32] Andreas Parra,et al. Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..
[33] Ioan Todinca,et al. Minimal interval completion through graph exploration , 2006, Theor. Comput. Sci..
[34] Ivan Rapaport,et al. Minimal Proper Interval Completions , 2006, WG.
[35] Hristo Djidjev,et al. A Linear-Time Algorithm for Finding a Maximal Planar Subgraph , 2006, SIAM J. Discret. Math..
[36] Flavia Bonomo,et al. NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..
[37] Mihalis Yannakakis,et al. Node-Deletion Problems on Bipartite Graphs , 1981, SIAM J. Comput..
[38] P. Heggernes,et al. Computing minimal triangulations in time O(nα log n) = o(n2.376) , 2005, SODA '05.
[39] Mihály Bakonyi,et al. Several results on chordal bipartite graphs , 1997 .
[40] Russell Merris,et al. Split graphs , 2003, Eur. J. Comb..
[41] Pinar Heggernes,et al. Making Arbitrary Graphs Transitively Orientable: Minimal Comparability Completions , 2006, ISAAC.
[42] Ioan Todinca,et al. Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..
[43] Noga Alon,et al. Every monotone graph property is testable , 2005, STOC '05.
[44] Sheng-Lung Peng,et al. On the interval completion of chordal graphs , 2006, Discret. Appl. Math..
[45] Pinar Heggernes,et al. A completely dynamic algorithm for split graphs , 2006, Electron. Notes Discret. Math..
[46] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .