Spatio-temporal approach to moving window block kriging of satellite data v1.0

Abstract. Numerous existing satellites observe physical or environmental properties of the Earth system. Many of these satellites provide global-scale observations, but these observations are often sparse and noisy. By contrast, contiguous, global maps are often most useful to the scientific community (i.e., Level 3 products). We develop a spatio-temporal moving window block kriging method to create contiguous maps from sparse and/or noisy satellite observations. This approach exhibits several advantages over existing methods: (1) it allows for flexibility in setting the spatial resolution of the Level 3 map, (2) it is applicable to observations with variable density, (3) it produces a rigorous uncertainty estimate, (4) it exploits both spatial and temporal correlations in the data, and (5) it facilitates estimation in real time. Moreover, this approach only requires the assumption that the observable quantity exhibits spatial and temporal correlations that are inferable from the data. We test this method by creating Level 3 products from satellite observations of CO2 (XCO2) from the Greenhouse Gases Observing Satellite (GOSAT), CH4 (XCH4) from the Infrared Atmospheric Sounding Interferometer (IASI) and solar-induced chlorophyll fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). We evaluate and analyze the difference in performance of spatio-temporal vs. recently developed spatial kriging methods.

[1]  Donato Posa,et al.  Product‐sum covariance for space‐time modeling: an environmental application , 2001 .

[2]  Roussos Dimitrakopoulos,et al.  Spatiotemporal Modelling: Covariances and Ordinary Kriging Systems , 1994 .

[3]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part II: Global X CO 2 data characterization , 2012 .

[4]  S. Randolph Kawa,et al.  A global evaluation of the regional spatial variability of column integrated CO2 distributions , 2008 .

[5]  Chunfeng Huang,et al.  On the Validity of Commonly Used Covariance and Variogram Functions on the Sphere , 2011 .

[6]  Alain Chedin,et al.  Tropospheric methane in the tropics – first year from IASI hyperspectral infrared observations , 2009 .

[7]  E. Middleton,et al.  First observations of global and seasonal terrestrial chlorophyll fluorescence from space , 2010 .

[8]  Hidekazu Matsueda,et al.  Characterization of Tropospheric Emission Spectrometer (TES) CO 2 for carbon cycle science , 2009 .

[9]  D. Myers,et al.  Estimating and modeling space–time correlation structures , 2001 .

[10]  Noel Cressie,et al.  Spatio-Temporal Data Fusion for Very Large Remote Sensing Datasets , 2014, Technometrics.

[11]  Christopher D. Barnet,et al.  Mid-upper tropospheric methane retrieval from IASI and its validation , 2013 .

[12]  C. Frankenberg,et al.  New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity , 2011, Geophysical Research Letters.

[13]  R. Mathias Matrix completions, norms and Hadamard products , 1993 .

[14]  Dorit Hammerling,et al.  Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT) , 2012 .

[15]  C. Frankenberg,et al.  Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence , 2013, Proceedings of the Royal Society B: Biological Sciences.

[16]  Vineet Yadav,et al.  Mapping of satellite Earth observations using moving window block kriging , 2014 .

[17]  Matthias Katzfuss,et al.  Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets , 2011 .

[18]  Jin Li,et al.  A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors , 2011, Ecol. Informatics.

[19]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[20]  Ilse Aben,et al.  Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI , 2014 .

[21]  Dorit Hammerling,et al.  Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO‐2 , 2012 .

[22]  Liping Lei,et al.  Spatiotemporal correlation analysis of satellite-observed CO2: Case studies in China and USA , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[23]  Akihiko Kuze,et al.  A Comparison of In Situ Aircraft Measurements of Carbon Dioxide and Methane to GOSAT Data Measured Over Railroad Valley Playa, Nevada, USA , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Makoto Saito,et al.  Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations , 2012 .

[25]  Shahrokh Rouhani,et al.  Space-Time Kriging of Groundwater Data , 1989 .

[26]  D. Myers,et al.  Space–time analysis using a general product–sum model , 2001 .

[27]  Hidekazu Matsueda,et al.  First year of upper tropospheric integrated content of CO 2 from IASI hyperspectral infrared observations , 2009 .

[28]  Bing Zhang,et al.  Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China , 2013 .

[29]  C. Frankenberg,et al.  Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2 , 2014 .

[30]  Jin Li,et al.  Assessing spatial predictive models in the environmental sciences: Accuracy measures, data variation and variance explained , 2016, Environ. Model. Softw..

[31]  E. Middleton,et al.  Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT , 2012 .

[32]  Masakatsu Nakajima,et al.  Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. , 2009, Applied optics.

[33]  Donato Posa,et al.  Spatial-Temporal Modeling of SO2 in Milan District , 1997 .

[34]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[35]  Philip Lewis,et al.  Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements , 2012 .

[36]  N. Cressie,et al.  Bayesian hierarchical spatio‐temporal smoothing for very large datasets , 2012 .

[37]  C. Frankenberg,et al.  Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2 , 2013 .

[38]  Edward T. Olsen,et al.  Simultaneous assimilation of AIRS Xco2 and meteorological observations in a carbon climate model with an ensemble Kalman filter , 2012 .

[39]  Hui Lin,et al.  Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics , 2017, Int. J. Digit. Earth.

[40]  Jin Li,et al.  Spatial interpolation methods applied in the environmental sciences: A review , 2014, Environ. Model. Softw..

[41]  C. Frankenberg,et al.  Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO 2 retrievals , 2012 .