N,N-dialkylaniline-substituted tetraethynylethenes: a new class of chromophores possessing an emitting charge-transfer state. Experimental and computational studies.

The photophysical properties of N,N-dimethylaniline- (DMA) substituted tetraethynylethene (TEE; 3,4-diethynylhex-3-ene-1,5-diyne) and related derivatives were investigated in a joint experimental and computational study. Measurements of the electronic emission spectra showed that these novel chromophores display a dual fluorescence which strongly depends on solvent polarity. Computational studies suggest that the twisted intramolecular charge-transfer state (TICT) model offers a possible explanation for the experimentally observed dual fluorescence. Time-dependent density functional calculations revealed that the initial excited state reached upon photoirradiation relaxes to a lower-energy TICT state in which either the dimethylamino group is twisted into an orthogonal position with respect to the remaining planar arylated TEE moiety or the entire DMA donor group takes an orthogonal orientation with respect to the rigid, planar TEE acceptor moiety. For the compounds investigated, the charge-transfer state responsible for the strongly solvent-dependent luminescence is directly connected with the initial excited state, namely, no crossing of states is involved.

[1]  J. Pople,et al.  Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements , 2002 .

[2]  F. Diederich,et al.  Photoswitchable Tetraethynylethene‐Dihydroazulene Chromophores , 2001 .

[3]  F. Gadéa,et al.  Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: Analysis within the two-level model with illustration for H2 and LiH , 2000 .

[4]  J. Tomasi,et al.  Ab Initio Study of the Electronic Excited States in 4-(N,N-Dimethylamino)benzonitrile with Inclusion of Solvent Effects: The Internal Charge Transfer Process , 2000 .

[5]  F. Diederich,et al.  Molecular Switching: A Fully Reversible, Optically Active Photochemical Switch Based on a Tetraethynylethene‐1,1′‐Binaphthalene Hybrid System , 2000 .

[6]  K. Zachariasse The PICT model for dual fluorescence of aminobenzonitriles. , 2000 .

[7]  J. J. Clair An Atmospherically Driven Optical Switch , 1999 .

[8]  James J. La Clair Ein von der Atmosphäre gesteuerter optischer Schalter , 1999 .

[9]  F. Diederich,et al.  CYCLIC AND LINEAR ACETYLENIC MOLECULAR SCAFFOLDING , 1999 .

[10]  Vincenzo Barone,et al.  Accurate excitation energies from time-dependent density functional theory: Assessing the PBE0 model , 1999 .

[11]  W. Rettig,et al.  Pseudo-Jahn–Teller and TICT-models: a photophysical comparison of meta- and para-DMABN derivatives , 1999 .

[12]  P. Seiler,et al.  EIN NEUER DREIFACHER CHROMOPHORER MOLEKULARER SCHALTER: PH- UND LICHTABHANGIGE SCHALTCYCLEN , 1999 .

[13]  Paul Seiler,et al.  A Novel Three-Way Chromophoric Molecular Switch: pH and Light Controllable Switching Cycles. , 1999, Angewandte Chemie.

[14]  K. Zachariasse,et al.  Intramolecular charge transfer in dual fluorescent 4-(dialkylamino)benzonitriles. , 1998 .

[15]  M. Kertész,et al.  The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene , 1997 .

[16]  J. J. Clair SELECTIVE DETECTION OF THE CARBOHYDRATE-BOUND STATE OF CONCANVALIN A AT THE SINGLE MOLECULE LEVEL , 1997 .

[17]  F. Diederich,et al.  Tetraethynylethene Molecular Scaffolding , 1997 .

[18]  Rainer E. Martin,et al.  Electronic Characteristics of Arylated Tetraethynylethenes: A Cooperative Computational and Electrochemical Investigation , 1997 .

[19]  F. Diederich,et al.  Donor/Acceptor‐Substituted Tetraethynylethenes: Systematic Assembly of Molecules for Use as Advanced Materials , 1996 .

[20]  F. Diederich,et al.  Acyclic Tetraethynylethene Molecular Scaffolding: Multinanometer‐sized linearly conjugated rods with the poly(triacetylene) backbone and cross‐conjugated expanded dendralenes , 1995 .

[21]  F. Diederich,et al.  Stable Soluble Conjugated Carbon Rods with a Persilylethynylated Polytriacetylene Backbone , 1994 .

[22]  F. Diederich,et al.  Stabile, lösliche, konjugierte Kohlenstoffstäbe mit einem persilylethinylierten Polytriacetylen‐Rückgrat , 1994 .

[23]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[24]  J. Daub,et al.  Der Einfluß von Substituenten auf die Photochromie Dihydroazulen ⇄ Dicyanvinylheptafulven: Sterische und elektronische Effekte bei 9‐Anthrylverbindungen — Synthese von kondensierten Hydropentalenen , 1989 .

[25]  J. Salbeck,et al.  Light‐Sensitive Molecular Building Blocks with Electron Transfer Activity: Synthesis and Properties of a Photochemically Switchable, Dicyanovinyl‐Substituted Furan , 1989 .

[26]  J. Salbeck,et al.  Lichtsensitive und elektronentransferaktive molekulare Bausteine: Synthese und Eigenschaften eines photochemisch schaltbaren, dicyanvinylsubstituierten Furans , 1989 .

[27]  Hiromichi Yamasaki,et al.  Halogenation using quaternary ammonium polyhalides. VII. Iodination of aromatic amines by use of benzyltrimethylammonium dichloroiodate(1 , 1988 .

[28]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[29]  Wolfgang Rettig Ladungstrennung in angeregten Zuständen entkoppelter Systeme – TICT-Verbindungen und Implikationen für die Entwicklung neuer Laserfarbstoffe sowie für den Primärprozeß von Sehvorgang und Photosynthese , 1986 .

[30]  W. Rettig Charge Separation in Excited States of Decoupled Systems—TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Process of Vision and Photosynthesis , 1986 .

[31]  J. Daub,et al.  Lichtinduzierte reversible Reaktionen: Synthesen und Eigenschaften photochromer 1,1-Dicyan-1,8a-dihydroazulene und thermochromer 8-(2,2-Dicyanvinyl)heptafulvene , 1986 .

[32]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[33]  J. Daub,et al.  Photosensitive Dihydroazulenes with Chromogenic Properties , 1984 .

[34]  A. Mannschreck,et al.  Lichtsensitive Dihydroazulene mit chromogenen Eigenschaften , 1984 .

[35]  W. Rettig,et al.  Fluorescence studies on solvent-induced intramolecular charge separation in symmetric biaryls , 1984 .

[36]  W. Rettig,et al.  Broken Symmetry in Excited States of 9,9′‐Bianthryl , 1983 .

[37]  Z. Grabowski,et al.  Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure , 1983 .

[38]  M. Asher,et al.  Two emitting states of excited p-(9-anthryl)-n,n-dimethylaniline derivatives in polar solvents , 1977 .

[39]  Z. Grabowski,et al.  Picosecond chemical relaxation of excited p-cyano-n, n-dialkylanilines , 1976 .

[40]  Z. R. Grabowski,et al.  Reinterpretation of the anomalous fluorescense of p-n,n-dimethylamino-benzonitrile , 1973 .

[41]  F. Moll,et al.  Umwandlung von Elektronenanregungsenergie , 1961 .

[42]  Ernst Lippert,et al.  Dipolmoment und Elektronenstruktur von angeregten Molekülen , 1955 .

[43]  H. Clarke,et al.  The Action of Formaldehyde on Amines and Amino Acids1 , 1933 .

[44]  J. Daub,et al.  Towards multifold cycloswitching of biphotochromes: investigation on a bond-fused dihydroazulene/vinylheptafulvene and dithienylethene/dihydrothienobenzothiophene , 1999 .

[45]  Rainer E. Martin,et al.  Photochemical trans–cis isomerisation of donor/acceptor-substituted (E)-hex-3-ene-1,5-diynes (1,2-diethynylethenes, DEEs) and 3,4-diethynylhex-3-ene-1,5-diynes (tetraethynylethenes, TEEs) , 1998 .

[46]  Wolfgang Rettig,et al.  Photoinduced charge separation via twisted intramolecular charge transfer states , 1994 .

[47]  J. Salbeck,et al.  Functionalized photochromics for molecular switching: the multistabilities of a dihydroazulene–anthraquinone system , 1991 .

[48]  J. Epsztajn,et al.  Delocalisation, conformation and basicity of anilines , 1984 .

[49]  Z. Grabowski,et al.  Dual fluorescence of donor-acceptor molecules and the Twisted Intramolecular Charge Transfer (TICT) states , 1979 .

[50]  Stuart A. Sim,et al.  XX.—p-Iodophenyltrimethylammonium perhalides , 1924 .