Riemann''s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics (

[1]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[2]  M. Berry Quantizing a classically ergodic system: Sinai's billiard and the KKR method , 1981 .

[3]  B. Simon,et al.  Nonclassical eigenvalue asymptotics , 1983 .

[4]  Madan Lal Mehta,et al.  Random Matrices and the Statistical Theory of Energy Levels. , 1970 .

[5]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[6]  Harold M. Edwards,et al.  Riemann's Zeta Function , 1974 .

[7]  An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions , 1983 .

[8]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  David Ruelle Repellers for real analytic maps , 1982 .

[10]  O. Bohigas,et al.  Chaotic motion and random matrix theories , 1984 .

[11]  J. Devreese,et al.  Path integrals and their applications in quantum, statistical, and solid state physics , 1978 .

[12]  J. S. Dehesa,et al.  Mathematical and Computational Methods in Nuclear Physics , 1984 .

[13]  A. Chodos,et al.  Symmetries in Particle Physics , 1984 .

[14]  J. Verbaarschot,et al.  Quantum spectra of classically chaotic systems without time reversal invariance , 1985 .

[15]  B. Pavlov,et al.  Scattering theory and automorphic functions , 1975 .

[16]  D. Hejhal The selberg trace formula and the riemann zeta function , 1976 .

[17]  W. Parry,et al.  An analogue of the prime number theorem for closed orbits of Axiom A flows , 1983 .

[18]  H. P. McKean,et al.  Selberg's trace formula as applied to a compact riemann surface , 1972 .

[19]  B. Simon Some quantum operators with discrete spectrum but classically continuous spectrum , 1983 .

[20]  R. Balian,et al.  Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations , 1972 .

[21]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  D. Ruelle Zeta-functions for expanding maps and Anosov flows , 1976 .