Nanosurfaces modulate the mechanism of peri-implant endosseous healing by regulating neovascular morphogenesis

[1]  Tim Clark,et al.  Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease , 2018, Proceedings of the National Academy of Sciences.

[2]  Yu-Chen Hu,et al.  Enhanced critical-size calvarial bone healing by ASCs engineered with Cre/loxP-based hybrid baculovirus. , 2017, Biomaterials.

[3]  E. Masliah,et al.  Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. , 2017, Cell stem cell.

[4]  J. Bastidas,et al.  Improved in vitro angiogenic behavior on anodized titanium dioxide nanotubes , 2017, Journal of Nanobiotechnology.

[5]  Alke Petri-Fink,et al.  Interaction of biomedical nanoparticles with the pulmonary immune system , 2017, Journal of Nanobiotechnology.

[6]  F. González-Nilo,et al.  Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines , 2017, Journal of Nanobiotechnology.

[7]  R. Dacosta,et al.  Femur Window Chamber Model for In Vivo Cell Tracking in the Murine Bone Marrow. , 2016, Journal of visualized experiments : JoVE.

[8]  Jonathan T. Pham,et al.  Guiding cell migration with microscale stiffness patterns and undulated surfaces. , 2016, Acta biomaterialia.

[9]  H. Kim,et al.  Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. , 2016, Nanoscale.

[10]  Hariprasad Ananth,et al.  A Review on Biomaterials in Dental Implantology , 2015, International journal of biomedical science : IJBS.

[11]  Jiebo Luo,et al.  Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair , 2015, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  R. Schibli,et al.  Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering , 2015, Scientific Reports.

[13]  E. Tasciotti,et al.  Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. , 2015, Nature materials.

[14]  M. Schwab,et al.  Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain , 2014, Nature Protocols.

[15]  R. C. Melo,et al.  Characterization of neutrophil adhesion to different titanium surfaces , 2014, Bulletin of Materials Science.

[16]  Markus Affolter,et al.  Blood Flow Changes Coincide with Cellular Rearrangements during Blood Vessel Pruning in Zebrafish Embryos , 2013, PloS one.

[17]  F. le Noble,et al.  Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models , 2013, Development.

[18]  M. Dickinson,et al.  A Specialized Microvascular Domain in the Mouse Neural Stem Cell Niche , 2013, PloS one.

[19]  Carl Virtanen,et al.  In Vivo Optical Imaging of Tumor and Microvascular Response to Ionizing Radiation , 2012, PloS one.

[20]  A. C. Jayasuriya,et al.  An overview of recent advances in designing orthopedic and craniofacial implants. , 2012, Journal of biomedical materials research. Part A.

[21]  B. Al-Nawas,et al.  Early implant healing: promotion of platelet activation and cytokine release by topographical, chemical and biomimetical titanium surface modifications in vitro. , 2012, Clinical oral implants research.

[22]  Dennis C Harrison Form and function , 2012, Canadian Medical Association Journal.

[23]  Daniel T. Montoro,et al.  Dura Mater Stimulates Human Adipose‐Derived Stromal Cells to Undergo Bone Formation in Mouse Calvarial Defects , 2011, Stem cells.

[24]  M. Menger,et al.  Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria. , 2011, Injury.

[25]  D. Kaplan,et al.  Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. , 2011, Biomaterials.

[26]  A. Pries,et al.  Intussusceptive angiogenesis: pillars against the blood flow , 2011, Acta physiologica.

[27]  Shayn M. Peirce,et al.  Rapid Analysis of Vessel Elements (RAVE): A Tool for Studying Physiologic, Pathologic and Tumor Angiogenesis , 2011, PloS one.

[28]  G. Huynh-Ba,et al.  Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. , 2011, Clinical oral implants research.

[29]  A. Zannettino,et al.  Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. , 2010, Blood.

[30]  M. Corselli,et al.  Perivascular Multipotent Progenitor Cells in Human Organs , 2009, Annals of the New York Academy of Sciences.

[31]  J. Davies,et al.  Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. , 2009, Journal of biomedical materials research. Part A.

[32]  W. Kilarski,et al.  Biomechanical regulation of blood vessel growth during tissue vascularization , 2009, Nature Medicine.

[33]  David W Holdsworth,et al.  In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model , 2009, Physics in medicine and biology.

[34]  C. Colnot,et al.  Skeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[35]  M Navarro,et al.  Biomaterials in orthopaedics , 2008, Journal of The Royal Society Interface.

[36]  S. Badylak,et al.  A perivascular origin for mesenchymal stem cells in multiple human organs. , 2008, Cell stem cell.

[37]  Christopher C W Hughes,et al.  TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. , 2008, Blood.

[38]  R J Composto,et al.  Microtopography and flow modulate the direction of endothelial cell migration. , 2008, American journal of physiology. Heart and circulatory physiology.

[39]  A. Piattelli,et al.  Influence of implant surface topography on early osseointegration: a histological study in human jaws. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[40]  Julian F. V. Vincent,et al.  Applications — influence of biology on engineering , 2006 .

[41]  G. Kassab Scaling laws of vascular trees: of form and function. , 2006, American journal of physiology. Heart and circulatory physiology.

[42]  Stephen M Bauer,et al.  Angiogenesis, Vasculogenesis, and Induction of Healing in Chronic Wounds , 2005, Vascular and endovascular surgery.

[43]  M. Textor,et al.  Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. , 2004, Journal of biomedical materials research. Part A.

[44]  J. Davies,et al.  Understanding peri-implant endosseous healing. , 2003, Journal of dental education.

[45]  F. Kayaselçuk,et al.  Roles of Periosteum, Dura, and Adjacent Bone on Healing of Cranial Osteonecrosis , 2003, The Journal of craniofacial surgery.

[46]  E. Scott,et al.  Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization , 2002, Nature Medicine.

[47]  R. Jain,et al.  Vascular Morphogenesis and Remodeling in a Human Tumor Xenograft: Blood Vessel Formation and Growth After Ovariectomy and Tumor Implantation , 2001, Circulation research.

[48]  C. Gemmell,et al.  Platelet interactions with titanium: modulation of platelet activity by surface topography. , 2001, Biomaterials.

[49]  A. Andres,et al.  Vascular remodelling during the normal and malignant life cycle of the mammary gland , 2001, Microscopy research and technique.

[50]  Xiaodong Feng,et al.  Angiogenesis in wound healing. , 2000, The journal of investigative dermatology. Symposium proceedings.

[51]  A. Canfield,et al.  Vascular Pericytes Express Osteogenic Potential In Vitro and In Vivo , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[52]  D Buser,et al.  Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. , 1991, Journal of biomedical materials research.

[53]  Håkan Mattsson,et al.  Surface spectroscopic characterization of titanium implant materials , 1990 .

[54]  Eliot R. Clark,et al.  Microscopic observations on the growth of blood capillaries in the living mammal , 1939 .

[55]  M. Majesky Vascular Development. , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[56]  J. Davies,et al.  Tau (τ): A New Parameter to Assess the Osseointegration Potential of an Implant Surface. , 2017, The International journal of oral & maxillofacial implants.

[57]  P. Layrolle,et al.  Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. , 2015, Acta biomaterialia.

[58]  J. Davies,et al.  Topographic scale-range synergy at the functional bone/implant interface. , 2014, Biomaterials.

[59]  J. Greenwood,et al.  Apelin is required for non-neovascular remodeling in the retina. , 2012, The American journal of pathology.

[60]  Tejal A Desai,et al.  Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. , 2010, Nano letters.

[61]  P. Krieg,et al.  Chapter 8.2 – Vascular Development , 2010 .

[62]  J. Davies,et al.  Mechanisms of endosseous integration. , 1998, The International journal of prosthodontics.

[63]  J. Lausmaa,et al.  Adhesion and activation of platelets and polymorphonuclear granulocyte cells at TiO2 surfaces. , 1997, The Journal of laboratory and clinical medicine.