Sensitivity and control efficacy of a novel complex III inhibitor pyribencarb against Sclerotinia sclerotiorum

[1]  T. Dumonceaux,et al.  Combining Desirable Traits for a Good Biocontrol Strategy against Sclerotinia sclerotiorum , 2022, Microorganisms.

[2]  L. Thatcher,et al.  Tackling Control of a Cosmopolitan Phytopathogen: Sclerotinia , 2021, Frontiers in Plant Science.

[3]  Jun Cao,et al.  Sclerotinia Stem Rot Resistance in Rapeseed: Recent Progress and Future Prospects. , 2021, Journal of agricultural and food chemistry.

[4]  Jian Hu,et al.  Baseline sensitivity and control efficacy of fluazinam against Clarireedia homoeocarpa , 2020 .

[5]  A. von Tiedemann,et al.  A Global Survey on Diseases and Pests in Oilseed Rape—Current Challenges and Innovative Strategies of Control , 2020, Frontiers in Agronomy.

[6]  Xin Li,et al.  The Notorious Soilborne Pathogenic Fungus Sclerotinia sclerotiorum: An Update on Genes Studied with Mutant Analysis , 2019, Pathogens.

[7]  Yiping Hou,et al.  Impact of fluazinam on morphological and physiological characteristics of Sclerotinia sclerotiorum. , 2019, Pesticide biochemistry and physiology.

[8]  Shengkun Li,et al.  Pharmacological characteristics of the novel fungicide pyrisoxazole against Sclerotinia sclerotiorum. , 2018, Pesticide biochemistry and physiology.

[9]  K. Rana,et al.  Resistance to Sclerotinia sclerotiorum in wild Brassica species and the importance of Sclerotinia subarctica as a Brassica pathogen , 2018 .

[10]  F. Zhu,et al.  Molecular and biochemical characterization of dimethachlone resistant isolates of Sclerotinia sclerotiorum. , 2017, Pesticide biochemistry and physiology.

[11]  F. Zhu,et al.  Baseline sensitivity and control efficacy of DMI fungicide epoxiconazole against Sclerotinia sclerotiorum , 2015, European Journal of Plant Pathology.

[12]  Xiaoyu Liang,et al.  Activity of a novel strobilurin fungicide benzothiostrobin against Sclerotinia sclerotiorum. , 2014, Pesticide biochemistry and physiology.

[13]  Y. Liao,et al.  Type II myosin gene in Fusarium graminearum is required for septation, development, mycotoxin biosynthesis and pathogenicity. , 2013, Fungal genetics and biology : FG & B.

[14]  Brett Williams,et al.  Cell Death Control: The Interplay of Apoptosis and Autophagy in the Pathogenicity of Sclerotinia sclerotiorum , 2013, PLoS pathogens.

[15]  Xi-jie Feng,et al.  In vitro inhibition of Sclerotinia sclerotiorum by mixtures of azoxystrobin, SHAM, and thiram , 2012 .

[16]  K. Perveen,et al.  Effect of Sclerotinia sclerotiorum on the disease development, growth, oil yield and biochemical changes in plants of Mentha arvensis , 2010, Saudi journal of biological sciences.

[17]  F. Klis,et al.  Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red , 2006, Nature Protocols.

[18]  R. Hall,et al.  Index of plant hosts of Sclerotinia sclerotiorum , 1994 .

[19]  B. Nelson,et al.  Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. , 2006, Molecular plant pathology.

[20]  C. Bulawa Genetics and molecular biology of chitin synthesis in fungi. , 1993, Annual review of microbiology.