Using Atom-Probe Tomography to Understand Zn O ∶ Al / Si O 2 / Si Schottky Diodes

We use electronic transport and atom probe tomography to study ZnO:Al / SiO2 / Si Schottky junctions on lightly-doped n- and p-type Si. We vary the carrier concentration in the the ZnO:Al films by two orders of magnitude but the Schottky barrier height remains constant, consistent with Fermi level pinning seen in metal / Si junctions. Atom probe tomography shows that Al segregates to the interface, so that the ZnO:Al at the junction is likely to be metallic even when the bulk of the ZnO:Al film is semiconducting. We hypothesize that Fermi level pinning is connected to the insulator-metal transition in doped ZnO, and that controlling this transition may be key to un-pinning the Fermi level in oxide / Si Schottky junctions.

[1]  K. Ellmer,et al.  Research Update: Inhomogeneous aluminium dopant distribution in magnetron sputtered ZnO:Al thin films and its influence on their electrical properties , 2015 .

[2]  S. Blügel,et al.  Local density of states at metal-semiconductor interfaces: an atomic scale study. , 2015, Physical review letters.

[3]  Krishna C. Saraswat,et al.  Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts , 2014 .

[4]  C. Battaglia,et al.  Silicon heterojunction solar cell with passivated hole selective MoOx contact , 2014 .

[5]  R. T. Tung The physics and chemistry of the Schottky barrier height , 2014 .

[6]  Xiaoshuang Chen,et al.  Group III dopant segregation and semiconductor-to-metal transition in ZnO nanowires: a first principles study , 2013 .

[7]  Baptiste Gault,et al.  Reconstructing atom probe data: a review. , 2013, Ultramicroscopy.

[8]  A. Nishida,et al.  Three-Dimensional Dopant Characterization of Actual Metal–Oxide–Semiconductor Devices of 65 nm Node by Atom Probe Tomography , 2013 .

[9]  K. Stiller,et al.  Atom Probe Tomography of Oxide Scales , 2013, Oxidation of Metals.

[10]  H. Fjellvåg,et al.  The work function of n-ZnO deduced from heterojunctions with Si prepared by ALD , 2012 .

[11]  S. Ringer,et al.  A New Approach to the Determination of Concentration Profiles in Atom Probe Tomography , 2012, Microscopy and Microanalysis.

[12]  F. Bechstedt,et al.  Band discontinuities at Si-TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches , 2012 .

[13]  S. Ramanathan,et al.  Electronic Granularity and the Work Function of Transparent Conducting ZnO:Al Thin Films , 2011 .

[14]  E A Marquis,et al.  Evolution of tip shape during field evaporation of complex multilayer structures , 2011, Journal of microscopy.

[15]  S. Ismail-Beigi,et al.  Interface-induced polarization and inhibition of ferroelectricity in epitaxial SrTiO₃/Si. , 2010, Physical review letters.

[16]  Han‐Ki Kim,et al.  An Al-doped ZnO electrode grown by highly efficient cylindrical rotating magnetron sputtering for low cost organic photovoltaics , 2010 .

[17]  Zhonghua Deng,et al.  Low content indium-doped zinc oxide films with tunable work function fabricated through magnetron sputtering , 2010 .

[18]  W. Körner,et al.  First-principles density functional study of dopant elements at grain boundaries in ZnO , 2010 .

[19]  C. Körber,et al.  Surface potentials of magnetron sputtered transparent conducting oxides , 2009 .

[20]  Edward H. Sargent,et al.  Aluminum doped zinc oxide for organic photovoltaics , 2009 .

[21]  D. Tsai,et al.  Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy , 2008 .

[22]  Karl Leo,et al.  Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes , 2007 .

[23]  Yujia Zeng,et al.  Carrier concentration dependence of band gap shift in n-type ZnO:Al films , 2007 .

[24]  A. Zunger,et al.  Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. , 2007, Physical review letters.

[25]  E. Choi,et al.  High work function of Al-doped zinc-oxide thin films as transparent conductive anodes in organic light-emitting devices , 2006 .

[26]  K. Schwarz,et al.  The interface between silicon and a high-k oxide , 2004, Nature.

[27]  K. Chae,et al.  Photoresponse of Si detector based on n-ZnO/p-Si and n-ZnO/n-Si structures , 2001 .

[28]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[29]  K. Sundaram,et al.  Work function determination of zinc oxide films , 1996, Proceedings of SOUTHEASTCON '96.

[30]  Walukiewicz Mechanism of Fermi-level stabilization in semiconductors. , 1988, Physical review. B, Condensed matter.

[31]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[32]  M. Schlüter Theoretical models of Schottky barriers , 1982 .

[33]  W. Göpel,et al.  Surface point defects and Schottky barrier formation on ZnO(101̄0) , 1980 .

[34]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[35]  Carver A. Mead,et al.  Fermi Level Position at Metal-Semiconductor Interfaces , 1964 .

[36]  P. Munroe,et al.  Focused ion beam sample preparation for atom probe tomography , 2010 .

[37]  L. J.,et al.  Schottky barriers : An effective work function model , 2002 .