Adaptive feedback passivity of nonlinear systems with sliding mode

Passivity of a class of nonlinear systems with unknown parameters is studied in this paper. There is a close connection between passivity and Lyapunov stability. This relationship can be shown by employing a storage function as a Lyapunov function. Passivity is the property stating that any storage energy in a system is not larger than the energy supplied to it from external sources. An appropriate update law is designed so that the new transformed system is passive. Sliding mode control is designed to maintain trajectories of a passive system on the sliding hyperplane and eventually to an equilibrium point on this surface.