Repulsive synchronization in complex networks.

Synchronization in complex networks characterizes what happens when an ensemble of oscillators in a complex autonomous system become phase-locked. We study the Kuramoto model with a tunable phase-lag parameter α in the coupling term to determine how phase shifts influence the synchronization transition. The simulation results show that the phase frustration parameter leads to desynchronization. We find two global synchronization regions for α∈[0,2π) when the coupling is sufficiently large and detect a relatively rare network synchronization pattern in the frustration parameter near α=π. We call this frequency-locking configuration as "repulsive synchronization," because it is induced by repulsive coupling. Since the repulsive synchronization cannot be described by the usual order parameter r, the parameter frequency dispersion is introduced to detect synchronization.

[1]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[2]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[3]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[4]  Tamás Vicsek,et al.  Controlling edge dynamics in complex networks , 2011, Nature Physics.

[5]  J. Buck Synchronous Rhythmic Flashing of Fireflies. II. , 1938, The Quarterly Review of Biology.

[6]  S. Zhong,et al.  Outer synchronization of a class of mixed delayed complex networks based on pinning control , 2018, Advances in Difference Equations.

[7]  Harry Eugene Stanley,et al.  Catastrophic cascade of failures in interdependent networks , 2009, Nature.

[8]  Ye Wu,et al.  Effects of frequency-degree correlation on synchronization transition in scale-free networks , 2013 .

[9]  Michael Schreckenberg,et al.  Empirical synchronized flow in oversaturated city traffic. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Martin A. Nowak,et al.  Evolutionary dynamics on graphs , 2005, Nature.

[11]  Diego Pazó,et al.  Thermodynamic limit of the first-order phase transition in the Kuramoto model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. Brede,et al.  Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model. , 2016, Physical review. E.

[13]  Yanping Chen,et al.  Two-grid method for compressible miscible displacement problem by CFEM-MFEM , 2018, J. Comput. Appl. Math..

[14]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[15]  Wiesenfeld,et al.  Synchronization transitions in a disordered Josephson series array. , 1996, Physical review letters.

[16]  Chuanji Fu,et al.  Center of mass in complex networks , 2017, Scientific Reports.

[17]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[18]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[19]  S. Strogatz Exploring complex networks , 2001, Nature.

[20]  J. Spencer,et al.  Explosive Percolation in Random Networks , 2009, Science.

[21]  Jun Wang,et al.  Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout , 2018, Appl. Math. Comput..

[22]  Hyunsuk Hong,et al.  Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. , 2011, Physical review letters.

[23]  Xinzhi Liu,et al.  Pinning stochastic sampled-data control for exponential synchronization of directed complex dynamical networks with sampled-data communications , 2018, Appl. Math. Comput..

[24]  Toshio Aoyagi,et al.  Co-evolution of phases and connection strengths in a network of phase oscillators. , 2009, Physical review letters.

[25]  Thomas K. D. M. Peron,et al.  The Kuramoto model in complex networks , 2015, 1511.07139.

[26]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[27]  Jürgen Kurths,et al.  Cluster explosive synchronization in complex networks. , 2013, Physical review letters.

[28]  Y. Kuramoto,et al.  A Soluble Active Rotater Model Showing Phase Transitions via Mutual Entertainment , 1986 .

[29]  M. Wolfrum,et al.  Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. , 2012, Physical review letters.

[30]  Harry Eugene Stanley,et al.  Robustness of a Network of Networks , 2010, Physical review letters.

[31]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[32]  Seth Lloyd,et al.  Efficiently Controllable Graphs. , 2015, Physical review letters.

[33]  Y. Sugiyama,et al.  Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam , 2008 .

[34]  Chittaranjan Hens,et al.  Perfect synchronization in networks of phase-frustrated oscillators , 2017 .

[35]  Chittaranjan Hens,et al.  Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model. , 2017, Physical review. E.

[36]  Shouming Zhong,et al.  New approach on designing stochastic sampled-data controller for exponential synchronization of chaotic Lur’e systems , 2018, Nonlinear Analysis: Hybrid Systems.

[37]  Martin A. Nowak,et al.  Evolutionary dynamics on any population structure , 2016, Nature.

[38]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[39]  Valery Petrov,et al.  Resonant pattern formation in achemical system , 1997, Nature.