Physics issues for shock ignition

The paper presents theoretical analysis and experimental results concerning the major physical issues in the shock-ignition approach. These are the following: generation of a high amplitude shock in the imploding target, laser–plasma interaction physics under the conditions of high laser intensities needed for high amplitude shock excitation, symmetry and stability of the shock propagation, role of fast electrons in the symmetrization of the shock pressure and the fuel preheat. The theoretical models and numerical simulations are compared with the results of specially designed experiments on laser plasma interaction and shock excitation in plane and spherical geometries.

[1]  S. R. Goldman,et al.  INCREASED SATURATED LEVELS OF STIMULATED BRILLOUIN SCATTERING OF A LASER BY SEEDING A PLASMA WITH AN EXTERNAL LIGHT SOURCE , 1998 .

[2]  Exploring the saturation levels of stimulated Raman scattering in the absolute regime. , 2010, Physical review letters.

[3]  J. C. White,et al.  Stimulated Raman scattering , 1992 .

[4]  Tomas Mocek,et al.  Measuring the electron density gradients of dense plasmas by deflectometry using short-wavelength probe , 2010 .

[5]  V. Rozanov,et al.  Steady-state model of the corona of spherical laser targets allowing for energy transfer by fast electrons , 1983 .

[6]  M. Rosenbluth,et al.  Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas , 1974 .

[7]  S. Laffite,et al.  Experiment in planar geometry for shock ignition studies. , 2012, Physical review letters.

[8]  Stefano Atzeni,et al.  Studies on the robustness of shock-ignited laser fusion targets , 2011 .

[9]  V. Tikhonchuk,et al.  Kinetic simulations of stimulated Raman backscattering and related processes for the shock-ignition approach to inertial confinement fusion , 2011 .

[10]  S. Depierreux,et al.  Laser–plasma interaction studies in the context of megajoule lasers for inertial fusion , 2002 .

[11]  E Alozy,et al.  Laser smoothing and imprint reduction with a foam layer in the multikilojoule regime. , 2009, Physical review letters.

[12]  D. T. Michel,et al.  Experimental investigation of the stimulated Brillouin scattering growth and saturation at 526 and 351 nm for direct drive and shock ignition , 2012 .

[13]  A. Maximov,et al.  Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments , 2009 .

[14]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[15]  Jaroslav Nejdl,et al.  Laser-plasma coupling in the shock-ignition intensity regime Part 1 , 2010 .

[16]  P. B. Radha,et al.  Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA , 2004 .

[17]  S. Starikovskaia Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms , 2014 .

[18]  J. D. Kilkenny,et al.  Polar direct drive on the National Ignition Facility , 2004 .

[19]  S. Gus'kov,et al.  Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons , 2013 .

[20]  W. Manheimer,et al.  Raman sidescattering in laser‐produced plasmas , 1985 .

[21]  L. Perkins,et al.  Shock ignition of thermonuclear fuel with high areal density. , 2006, Physical review letters.

[22]  I. Calvo,et al.  Phase-space Lagrangian derivation of electrostatic gyrokinetics in general geometry , 2010, 1009.0378.

[23]  S. Depierreux,et al.  Studies on laser beam propagation and stimulated scattering in multiple beam experiments , 2006 .

[24]  P. Chang,et al.  Fast-electron generation in long-scale-length plasmas , 2012 .

[25]  Guy Schurtz,et al.  Gain curves and hydrodynamic modeling for shock ignition , 2010 .

[26]  V. Tikhonchuk,et al.  Coherent forward stimulated-brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray. , 2008, Physical review letters.

[27]  David Strozzi,et al.  Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled Hohlraums , 2008 .

[28]  X. Ribeyre,et al.  Analytic criteria for shock ignition of fusion reactions in a central hot spot , 2011 .

[29]  G. McCall Laser-driven implosion experiments , 1983 .

[30]  R. Betti,et al.  One-dimensional planar hydrodynamic theory of shock ignition , 2011 .

[31]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[32]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[33]  S. Gus'kov,et al.  Ablation pressure driven by an energetic electron beam in a dense plasma. , 2012, Physical review letters.

[34]  Edward I. Moses,et al.  The National Ignition Facility: Laser Performance and First Experiments , 2005 .

[35]  L. Perkins,et al.  Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility , 2012 .

[36]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[37]  A variational approach to parametric instabilities in inhomogeneous plasmas I: Two model problems , 1997 .

[38]  Remy Fabbro,et al.  Planar laser-driven ablation: Effect of inhibited electron thermal conduction , 1985 .

[39]  L. Perkins,et al.  Initial experiments on the shock-ignition inertial confinement fusion concept , 2008 .

[40]  M. Murakami,et al.  Erratum: Interaction Physics of the Fast Ignitor Concept [Phys. Rev. Lett. 77, 2483 (1996)] , 2000 .

[41]  S. Skupsky,et al.  Irradiation uniformity for high-compression laser-fusion experiments , 1999 .

[42]  S. Zalesak,et al.  Stability of a shock-decelerated ablation front. , 2009, Physical review letters.

[43]  D. Dubois,et al.  Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping. , 2001, Physical review letters.

[44]  Riccardo Betti,et al.  Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions , 2007 .

[45]  J. Moody,et al.  Localization of Stimulated Brillouin Scattering in Random Phase Plate Speckles , 1998 .

[46]  Williams,et al.  Unified Theory of Stimulated Raman Scattering and Two-Plasmon Decay in Inhomogeneous Plasmas: High Frequency Hybrid Instability. , 1995, Physical review letters.

[47]  Vladimir T. Tikhonchuk,et al.  Particle-in-cell simulations of laser–plasma interaction for the shock ignition scenario , 2010 .

[48]  A Mocofanescu,et al.  Stimulated Brillouin Scattering , 2003 .

[49]  Jérôme Breil,et al.  Hydrodynamic and symmetry safety factors of HiPER's targets , 2009 .

[50]  B. Canaud,et al.  High-gain shock ignition of direct-drive ICF targets for the Laser Mégajoule , 2010 .

[51]  K. Bowers,et al.  Self-organized bursts of coherent stimulated Raman scattering and hot electron transport in speckled laser plasma media. , 2012, Physical review letters.

[52]  Herve Graillot,et al.  The LIL facility quadruplet commissioning , 2006 .

[53]  M. Rosenbluth Parametric Instabilities in Inhomogeneous Media , 1972 .

[54]  A. Hauer,et al.  CO2 laser‐driven high‐density implosion experiments , 1981 .

[55]  Williams,et al.  First Optical Observation of Intensity Dependent Laser Beam Deflection in a Flowing Plasma. , 1996, Physical review letters.

[56]  Robert L. McCrory,et al.  Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .

[57]  F. Amiranoff,et al.  Effect of laser wavelength and pulse duration on laser-light absorption and back reflection , 1982 .

[58]  D. Russell,et al.  The reduced-description particle-in-cell model for the two plasmon decay instability , 2010 .

[59]  Z. Sheng,et al.  Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion. , 2012, Physical review letters.

[60]  Guy Schurtz,et al.  Shock ignition: an alternative scheme for HiPER , 2008 .

[61]  O. Klimo,et al.  Fast saturation of the two-plasmon-decay instability for shock-ignition conditions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Andrew J. Schmitt,et al.  Shock ignition target design for inertial fusion energy , 2010 .

[63]  J. Boris,et al.  Influence of Nonuniform Laser Intensities on Ablatively Accelerated Targets , 1982 .

[64]  S. Depierreux,et al.  Experimental study of the stimulated Brillouin scattering saturation at 527 nm , 2006 .

[65]  Absolute growth of coupled forward and backward Raman scattering in inhomogeneous plasma , 1984 .

[66]  Stephen E. Bodner,et al.  Critical elements of high gain laser fusion , 1981 .

[67]  T. C. Sangster,et al.  Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA , 2012 .

[68]  V. Tikhonchuk,et al.  Low-level saturation of Brillouin backscattering due to cavity formation in high-intensity laser-plasma interaction. , 2005, Physical review letters.

[69]  P. B. Radha,et al.  Advanced-ignition-concept exploration on OMEGA , 2009 .

[70]  S. Skupsky,et al.  Progress in direct-drive inertial confinement fusion , 2004 .

[71]  R. Betti,et al.  Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets , 2008 .

[72]  M. Rosenbluth,et al.  Parametric decay of electromagnetic waves into two plasmons and its consequences , 1976 .

[73]  Albert Simon,et al.  On the inhomogeneous two‐plasmon instability , 1983 .

[74]  E. Williams,et al.  A variational approach to parametric instabilities in inhomogeneous plasmas IV: The mixed polarization high-frequency instability , 1997 .

[75]  J Ebrardt,et al.  LMJ on its way to fusion , 2010 .

[76]  D. Russell,et al.  Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon–decay instability , 2012 .

[77]  K. Bowers,et al.  Trapping induced nonlinear behavior of backward stimulated Raman scattering in multi-speckled laser beamsa) , 2011 .

[78]  W. Kruer,et al.  The Physics of Laser Plasma Interactions , 2019 .

[79]  Donald W. Phillion,et al.  Efficient Raman sidescatter and hot-electron production in laser-plasma interaction experiments , 1984 .

[80]  S. Atzeni Inertial Confinement Fusion with Advanced Ignition Schemes: Fast Ignition and Shock Ignition , 2013 .

[81]  J D Lindl,et al.  Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  O. Klimo,et al.  Laser–plasma interaction studies in the context of shock ignition: the regime dominated by parametric instabilities , 2013 .

[83]  R. Evans A simple model of ion beam heated ICF targets , 1983 .

[84]  Baldis,et al.  Resonant Seeding of Stimulated Brillouin Scattering by Crossing Laser Beams. , 1996, Physical review letters.

[85]  N. H. Burnett,et al.  Generation of shock waves by hot electron explosions driven by a CO2 laser , 1981 .

[86]  B. Rus,et al.  The HiPER project for inertial confinement fusion and some experimental results on advanced ignition schemes , 2011 .

[87]  J. M. Koning,et al.  Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs , 2011 .

[88]  Pavel M. Lushnikov,et al.  How much laser power can propagate through fusion plasma , 2005 .

[89]  Drake,et al.  Onset and Saturation of the Spectral Intensity of Stimulated Brillouin Scattering in Inhomogeneous Laser-Produced Plasmas. , 1996, Physical review letters.

[90]  C. Li,et al.  Stopping of directed energetic electrons in high-temperature hydrogenic plasmas. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  O. Klimo,et al.  Laser plasma interaction studies in the context of shock ignition—Transition from collisional to collisionless absorption , 2011 .

[92]  L. Perkins,et al.  Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility. , 2009, Physical review letters.

[93]  Barry E. Schwartz,et al.  Spectrometry of charged particles from inertial-confinement-fusion plasmas , 2003 .

[94]  Laser generation of ultra high pressure , 1986 .