Clustering measure-valued data with Wasserstein barycenters
暂无分享,去创建一个
G. Domazakis | D. Drivaliaris | S. Koukoulas | G. Papayiannis | A. Tsekrekos | A. Yannacopoulos | S. Koukoulas | A. Yannacopoulos | G. Papayiannis | A. Tsekrekos | G. Domazakis | D. Drivaliaris
[1] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[2] Charu C. Aggarwal,et al. Managing and Mining Uncertain Data , 2009, Advances in Database Systems.
[3] Julien Jacques,et al. Model-based clustering for multivariate functional data , 2013, Comput. Stat. Data Anal..
[4] Hans-Hermann Bock,et al. Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..
[5] Cordelia Schmid,et al. High-dimensional data clustering , 2006, Comput. Stat. Data Anal..
[6] Jeng-Min Chiou,et al. Functional clustering and identifying substructures of longitudinal data , 2007 .
[7] Gabriel Peyré,et al. Convergence of Entropic Schemes for Optimal Transport and Gradient Flows , 2015, SIAM J. Math. Anal..
[8] A. Yannacopoulos,et al. A learning algorithm for source aggregation , 2018 .
[9] B. Mallick,et al. Functional clustering by Bayesian wavelet methods , 2006 .
[10] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[11] Yves Lechevallier,et al. Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009, Pattern Recognit..
[12] Ashish Ghosh,et al. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images , 2011, Inf. Sci..
[13] Yoav Zemel,et al. Procrustes Metrics on Covariance Operators and Optimal Transportation of Gaussian Processes , 2018, Sankhya A.
[14] Fatih Murat Porikli,et al. Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[15] Charu C. Aggarwal,et al. On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.
[16] Raymond Y. K. Lau,et al. Time series k-means: A new k-means type smooth subspace clustering for time series data , 2016, Inf. Sci..
[17] Victor M. Panaretos,et al. Fréchet means and Procrustes analysis in Wasserstein space , 2017, Bernoulli.
[18] T. Warren Liao,et al. Clustering of time series data - a survey , 2005, Pattern Recognit..
[19] Renato Cordeiro de Amorim,et al. Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering , 2012, Pattern Recognit..
[20] Vit Niennattrakul,et al. On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping , 2007, 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07).
[21] Adam M. Oberman,et al. NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS , 2014, 1411.3602.
[22] Thibaut Le Gouic,et al. Existence and consistency of Wasserstein barycenters , 2015, Probability Theory and Related Fields.
[23] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[24] Antonio Irpino,et al. Dynamic clustering of interval data using a Wasserstein-based distance , 2008, Pattern Recognit. Lett..
[25] Dimitrios Gunopulos,et al. A Wavelet-Based Anytime Algorithm for K-Means Clustering of Time Series , 2003 .
[26] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[27] Feiping Nie,et al. Learning a Mahalanobis distance metric for data clustering and classification , 2008, Pattern Recognit..
[28] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[29] R A Haggarty,et al. Spatially weighted functional clustering of river network data , 2014, Journal of the Royal Statistical Society. Series C, Applied statistics.
[30] L. K. Hansen,et al. On Clustering fMRI Time Series , 1999, NeuroImage.
[31] Brendan Pass,et al. Wasserstein Barycenters over Riemannian manifolds , 2014, 1412.7726.
[32] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[33] Julien Rabin,et al. Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.