Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems

In this paper, we consider an accelerated method for solving nonconvex and nonsmooth minimization problems. We propose a Bregman Proximal Gradient algorithm with extrapolation (BPGe). This algorithm extends and accelerates the Bregman Proximal Gradient algorithm (BPG), which circumvents the restrictive global Lipschitz gradient continuity assumption needed in Proximal Gradient algorithms (PG). The BPGe algorithm has a greater generality than the recently introduced Proximal Gradient algorithm with extrapolation (PGe) and, in addition, due to the extrapolation step, BPGe converges faster than the BPG algorithm. Analyzing the convergence, we prove that any limit point of the sequence generated by BPGe is a stationary point of the problem by choosing the parameters properly. Besides, assuming Kurdyka-Łojasiewicz property, we prove that all the sequences generated by BPGe converge to a stationary point. Finally, to illustrate the potential of the new method BPGe, we apply it to two important practical problems that arise in many fundamental applications (and that not satisfy global Lipschitz gradient continuity assumption): Poisson linear inverse problems and quadratic inverse problems. In the tests the accelerated BPGe algorithm shows faster convergence results, giving an interesting new algorithm.

[1]  Thomas Pock,et al.  Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems , 2016, SIAM J. Imaging Sci..

[2]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[3]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[4]  Yurii Nesterov,et al.  Relatively Smooth Convex Optimization by First-Order Methods, and Applications , 2016, SIAM J. Optim..

[5]  Lin Xiao,et al.  A Proximal Stochastic Gradient Method with Progressive Variance Reduction , 2014, SIAM J. Optim..

[6]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[7]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[8]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[9]  Yair Carmon,et al.  Accelerated Methods for NonConvex Optimization , 2018, SIAM J. Optim..

[10]  D. Russell Phase Retrieval , What ’ s New ? , 2017 .

[11]  Peter G. Casazza,et al.  Phase retrieval , 2015, SPIE Optical Engineering + Applications.

[12]  Yurii Nesterov,et al.  Dual extrapolation and its applications to solving variational inequalities and related problems , 2003, Math. Program..

[13]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[14]  E. A. Nurminskii The quasigradient method for the solving of the nonlinear programming problems , 1973 .

[15]  Dmitriy Drusvyatskiy,et al.  Stochastic model-based minimization under high-order growth , 2018, ArXiv.

[16]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[17]  Marc Teboulle,et al.  A simplified view of first order methods for optimization , 2018, Math. Program..

[18]  Asuman E. Ozdaglar,et al.  Global Convergence Rate of Proximal Incremental Aggregated Gradient Methods , 2016, SIAM J. Optim..

[20]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[21]  Huan Li,et al.  Accelerated Proximal Gradient Methods for Nonconvex Programming , 2015, NIPS.

[22]  F. Lucka Fast Gibbs sampling for high-dimensional Bayesian inversion , 2016, 1602.08595.

[23]  Marc Teboulle,et al.  Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..

[24]  Y. Censor,et al.  An iterative row-action method for interval convex programming , 1981 .

[25]  Marc Teboulle,et al.  A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications , 2017, Math. Oper. Res..

[26]  Bo Wen,et al.  Linear Convergence of Proximal Gradient Algorithm with Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems , 2015, SIAM J. Optim..

[27]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[28]  Asuman E. Ozdaglar,et al.  A fast distributed proximal-gradient method , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[29]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[30]  Radu Ioan Bot,et al.  An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions , 2014, EURO J. Comput. Optim..

[31]  Mark W. Schmidt,et al.  Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization , 2011, NIPS.

[32]  Y. Censor,et al.  On the proximal minimization algorithm with D-Functions , 1992 .

[33]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[34]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[35]  Atsushi Nitanda,et al.  Stochastic Proximal Gradient Descent with Acceleration Techniques , 2014, NIPS.

[36]  K. Kiwiel Proximal Minimization Methods with Generalized Bregman Functions , 1997 .

[37]  Marc Teboulle,et al.  First Order Methods beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems , 2017, SIAM J. Optim..

[38]  M. Bertero,et al.  Image deblurring with Poisson data: from cells to galaxies , 2009 .

[39]  Guoyin Li,et al.  Calculus of the Exponent of Kurdyka–Łojasiewicz Inequality and Its Applications to Linear Convergence of First-Order Methods , 2016, Foundations of Computational Mathematics.

[40]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[41]  Kim-Chuan Toh,et al.  An Inexact Accelerated Proximal Gradient Method for Large Scale Linearly Constrained Convex SDP , 2012, SIAM J. Optim..

[42]  Panos M. Pardalos,et al.  Convex optimization theory , 2010, Optim. Methods Softw..

[43]  Saeed Ghadimi,et al.  Accelerated gradient methods for nonconvex nonlinear and stochastic programming , 2013, Mathematical Programming.